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Abstract

Many existing systems track aliasing and uniqueness, each
with their own trade-off between expressiveness and devel-
oper effort.
We propose Latte, a new approach that aims to minimize

both the amount of annotations and the complexity of in-
variants necessary for reasoning about aliasing in an object-
oriented languagewithmutation. Our approach only requires
annotations for parameters and fields, while annotations for
local variables are inferred. Furthermore, it relaxes unique-
ness to allow aliasing among local variables, as long as this
aliasing can be precisely determined. This enables support
for destructive reads without changes to the language or its
run-time semantics.
Despite this simplicity, we show how this design can still

be used for tracking uniqueness and aliasing in a local se-
quential setting, with practical applications, such as model-
ing a stack.

CCSConcepts: •Theory of computation→Programse-

mantics; • Software and its engineering → Object ori-

ented languages.

Keywords: aliasing, uniqueness, ownership, java

1 Introduction

From low-level languages like C to high-level programming
languages like Python, the combination of mutability with
aliasing has been the source of many bugs, warranting its
own term (Aliasing Bug).
Reasoning about aliasing is difficult, as it usually requires

a global analysis of the program and its possible traces of
execution. To overcome this challenge, the community has
proposed type systems that track and restrict aliasing [7, 8].
In this very large design space, there are lines of work more
focused on uniqueness, ownership and permissions. How-
ever, these proposals add complexity relative to ordinary
type systems, and in some cases require developers to un-
derstand and reason about quite complex concepts. For ex-
ample, ownership has been frequently mentioned as one of

∗Both authors contributed equally to this research.

the hardest concepts to learn in the Rust programming lan-
guage [19, 23].
Thus, we propose a type system for uniqueness and alias-

ing that aims to be more usable and impose low overhead
on developers. Moreover, we intend to keep our approach
as simple as possible so that it can support the development
of more complex type systems (like Liquid Types [24]) that
require reasoning about uniqueness and aliasing.
In particular, we propose a type system for a subset of the

Java language that tracks uniqueness and heap aliasing with
low annotation effort and no necessary runtime changes. To
handle uniqueness, we provide the developer with the sim-
ple invariant that no two references in the heap point to the

same unique object.
We require few annotations, specifically two (unique and

shared) for object fields and return types, and three (adding
owned) for method parameters, and we infer the remaining
information for local variables.
Moreover, we aim to maintain Java’s runtime semantics

unaltered, and therefore do not build in destructive reads;
the programmer can, however, get a similar effect with an
explicit assignment to null.
In the remainder of the paper, we present an overview

of previous work that is closely related to ours (Section 2),
followed by our approach with the presentation of an exam-
ple and the system’s grammar and typing rules (Section 3).
At the end, we discuss some of the system’s limitations and
future directions for this work (Section 4).

2 Related Work

There are different approaches for managing aliasing in pro-
gramming languages. One popular line of work focuses on
ownership types [10], a type system that restricts access to
objects according to their owners. There have beenmultiple
proposals for ownership types with different flavors [9]. Un-
fortunately, classic ownership types alone do not track alias-
ing within ownership boundaries, making it difficult for ver-
ification tools to precisely track the effect of assignments.

http://arxiv.org/abs/2309.05637v1
https://martinfowler.com/bliki/AliasingBug.html


Tracking uniqueness can provide strong guarantees about
aliasing, which is useful for verification as well as safe man-
ual memory management, e.g. as implemented in Rust [21].
However, more powerful systems such as Rust’s (which is
called “ownership,” though it provides uniqueness in the sense
described in the research literature) are known to be com-
plex and difficult for developers to understand [11].
Uniqueness types [12] allow uniqueness properties to be

specified as part of a data type. However, this approach is
tailored to functional programming languages and requires
a significantly different type system, thus its applicability to
Java is limited.

Other type systems for uniqueness focus on the use cases
of concurrency and message passing. For example, Haller
and Odersky [16] use capabilities [4] to add uniqueness and
borrowing to a Java-like languages with a focus on message
passing in concurrent object-oriented programming. They
use a concept of separate uniqueness, where distinct vari-
ables do not share a common reachable object. Thus unique-
ness is used to enforce separation, which is desirable for con-
current message-passing systems.
More recently, Milano et al. [22] presented a new lan-

guage and type system for safe concurrency by statically
ensuring that different threads cannot access the same heap
regions. Their proposal focused on reducing the annotation
burden and eliminating the need for unnatural rewrites re-
quired by more restrictive programming models. Also aim-
ing for aminimal set of annotations, LaCasa [15] adds unique-
ness to the Scala language using object capabilities. How-
ever, this approach requires classes to adhere to the object-
capability discipline, and their empirical evaluation showed
that most classes from the standard library do not follow
these rules.
There are other approaches that focus on modeling dif-

ferent aspects of aliasing. Reachability types [2] uses reach-
ability sets to reason about ownership, and tracks reachable
values using type qualifiers. This work layers uniqueness,
nested mutable state and other concepts over the tracking
of reachability sets. Unique accesses are enabled by killing
all other access paths to a reference.
Castegren andWrigstad [6] combinedmany of the previously-

mentioned concepts in their ^ language. This language uses
reference capabilities to ensure separation, and combines
techniques from ownership types, linear types [25], and re-
gions [14] in a concurrent and parallel object-oriented set-
ting.
The systems described above were not implemented for

Java, however, and it is unclear how to do so, as they rely
on language features that Java does not have, such as capa-
bilities in Scala or a primitive swap operation.
AliasJava [1] does extend Java with type annotations in

Java that specify data sharing relationships. The type sys-
tem includes four annotations: unique, owned, lent and shared,
and reduces the annotation burden by inferring annotations.

Our approach is similar in spirit, but achieves greater sim-
plicity by doing without ownership and ownership parame-
ters, while allowing more local alising within a method.
Many early systems for uniqueness used destructive reads,

but these often negatively impact program complexity by
reducing the ability to query information contained in ob-
jects [5]. Therefore, alias burying [3] aims to define a unique-
ness system for Java-like languages without using destruc-
tive reads by relying on the idea that aliases that will not
be used again can be buried. However, as noted by Boyland
and Retert [5], the analysis described in the initial work [3]
exposes implementation details, such as the fields read by a
method, which breaks encapsulation and modularity.
In summary, the prior work has one of three limitations:

reliance on language or type system features not present in
Java, modularity or coding pattern issues, or a larger and
more complex set of abstractions for programmers to un-
derstand compared to our goals. All of these design choices
raise the adoption cost for developers. In our approach, Latte,
we try to address these difficulties by creating a lightweight
uniqueness system with few annotations. Latte, which we
present in the following section, requires no changes to the
language semantics, and allows many common code pat-
terns while precisely tracking aliasing.

3 Approach

As we described previously, our design aims to impose min-
imal restrictions while enforcing unique references (in the
heap) and tracking aliasing (in the stack). While our system
is not as expressive as others in previous work, its main ad-
vantages are an easily-understood programming model and
low annotation complexity.
In particular, our design only requires annotations on fields

and parameters (with only two and three possible choices,
respectively). This burden can be further reduced by choos-
ing sensible defaults. Local variables do not need annota-
tions, as the aliasing between local variables and field val-
ues is inferred, which reduces the barrier to adopting this
system.
In this section, we first give a high-level description of

our approach, and then use an example to build intuition
about our model. We then formally define the typing rules
on top of a Featherweight Java [18]-inspired core language
and explain how these rules result in the intended behavior.
Finally, we demonstrate the expressive power of our system
with a more complex example.

3.1 Description

First, we restrict our definition of uniqueness to only con-
sider reachable values on the heap, thus unique values may
be stored in at most one reachable heap location, and aliased
in the local environment. However, these dynamic aliases
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[17] may only be used as long as such aliasing can be pre-
cisely inferred. Our treatment of dynamic aliases and un-
reachable heap locations is similar to that of alias burying
[5].
In Latte, the annotation unique is used to identify unique

values (as defined above). owned identifies borrowed values,
since it is only used on method parameters whose value
will be owned by some other context when entering the
method body. shared identifies values that may or may not
be unique.
We aim to use our analysis in an automated verifier such

as LiquidJava [13] to reason about mutation of unique (and
borrowed) values. This requires precisely identifying all val-
ues that may be affected by a particular mutation. Our ap-
proach does this while permitting dynamic aliases, by in-
ferring annotations of the form alias(?) or ⊥ during type
checking. These special annotations are only inferred; they
are never written by the developer.
For each local variable G , our typing environment Δ con-

tains a class � and an annotation U which describes the
uniqueness of G at that point. The formal definition of Δ
is given later in Figure 3.

3.2 Example

We illustrate the main features of our approach by imple-
menting push and pop operations for a stack storing unique
values. References to objects pushed onto the stack may not
be stored on the heap anywhere else. This invariant could
be used by an automated verifier to show that values pushed
onto the stack will not be mutated until they are returned
by pop. The code is shown in Figure 1.
First, we demonstrate how the pushmethod is validated.

At each step, we have listed (in Figure 1) the current typing
context Δ to illustrate the verification process.
The typing environment at the beginning of the method

body contains the parameters and their types (line 17). Be-
cause the two variables r and n are declared, but not yet ini-
tialized at line 18, they are annotated with ⊥ to mark them
inaccessible. r is aliased with this.root at line 19, and
this aliasing information is added to the environment by an-
notating r with alias(this.root). Next, this.root is
assigned, which isolates it in the typing environment (a pro-
cess that we describe in §3.4.5). This invalidates all aliases to
it, which allows the previously-aliased variable r to become
unique and thus claim ownership.
Note that lines 19-20 are equivalent to a destructive read.

However, we do not need to change the language semantics
or introduce new language constructs. Also, the need for
this destructive read is easily understood: we want to store
this.root in a different place in the heap, thus we need
to remove its current value from the heap. Otherwise, our
uniqueness invariant would be violated since the value at
this.root (which is declared unique) would be stored in
multiple reachable places in the heap.

1 class Node {

2 unique Object value;

3 unique Node next;

4

5 Node(unique Object value, unique Node next)

6 { this.value = value;

7 this.next = next; }

8 }

9

10 class Stack {

11 unique Node root;

12

13 Stack(unique Node root)

14 { this.root = root; }

15

16 void push(owned Stack this,

17 unique Object value) {

Δ = this : ownedStack, value : uniqueObject

18 Node r; Node n;

Δ = · · · , r : ⊥Node, n : ⊥Node

19 r = this.root;

Δ = · · · , r : alias(this.root) Node

20 this.root = null;

Δ = · · · , r : uniqueNode

21 n = new Node(value, r);

Δ =this : ownedStack, value : ⊥Object,

r : ⊥Node, n : uniqueNode

22 this.root = n;

Δ = · · · , n : alias(this.root) Node

23 }

24

25 unique Object pop(owned Stack this) {

26 Object value;

27 if (this.root == null) {

28 value = null;

29 } else {

30 value = this.root.value;

31 Node next;

32 next = this.root.next;

33 this.root = next;

34 }

35 return value;

36 }

37 }

Figure 1. Example: a stack for unique references

Continuing with our example, we initialize a new Node

object at line 21. The constructor of Node has the signature
(unique Object, unique Node), which states that it con-
sumes both arguments. This marks value and r as inac-
cessible (⊥) in the calling context. We encapsulate construc-
tor bodies, thus we do not know what value or r may be
aliased with after they are passed to the constructor. Since



% ::=�!

�! ::= class� extends� { �  " }

U 5 ::= unique | shared

U? ::= unique | shared | owned

� ::= U 5 � 5 ;

 ::=� (U 5 � 6, U 5 � 5 ){ super(6);this.5 = 5 ; }

g ::= U 5 � | void

" ::= void<(U? � this, U? � G) { B }

| U 5 � <(U? � this, U? � G) { B return 4; }

? ::= G | ?.5

4 ::= null | ?

B ::=� G; | G = 4; | G.5 = 4;

| G = new � (4); | G = G.<(4); | G.<(4);

| if (4 == 4) B else B | { B }

Figure 2. Grammar extended from Featherweight Java

we cannot track this aliasing, any usage of these values is
disallowed after they are passed to the constructor.
Finally, we assign n to this.root at line 22. Since our

typing context only stores annotations for local variables,
and not for fields, we update the annotation for the local
variable n, which is on the RHS of the assignment. The an-
notation alias(this.root) simply denotes that its target
this.root contains the same value as the annotated vari-
able n, thus it does not matter which side of an alias is an-
notated. After this line, Δ indicates that n is aliased with
this.root, thus we have precisely determined all local
aliases to the unique value this.root, and ensured that
this.root is stored at only one location on the heap.
This first method gives an overview of our approach; the

second method (pop, at line 32) will be presented in Sec-
tion 3.4.7 after the grammar and typing rules are introduced.

3.3 Grammar

For our grammar, presented in Figure 2, we extended Feath-
erweight Java [18] with statements, including field and vari-
able assignments as in Java, to better approximate the Java
language in terms of mutability (a key concern in this pa-
per). To model our particular system, we added the unique,
shared, and owned annotations. All fields (� ) must be anno-
tated with either unique or shared (U 5 ), while method pa-
rameters (in ") must be annotated with one of the three
annotations (U? ). Note that variable declarations are not an-
notated (first production of B).
Our owned annotation is often called lent or borrowed

in other systems. Our choice reflects the state of the value

within the method body – the value is owned by some other
context.

3.4 Typing rules

Our typing rules use a local type environment Δ. This envi-
ronment maps variables to an annotated class (U �), where
the annotation specifies the current aliasing or uniqueness
information. The form of Δ is given in Figure 3.
A shared annotation denotes that the variable can be ac-

cessed by outside objects – untracked aliasesmay exist. owned
denotes that the value of the variable is borrowed; specifi-
cally, its value is unique in the current context and no new
aliases may be added to the heap. unique denotes ownership
– the value is only stored at this location (modulo precisely-
tracked dynamic aliases). A local variable annotated unique
may be converted to a shared, based on its usage. ⊥ denotes
that the value is inaccessible.

U4 ::= owned | shared | unique | unique(?.5 )

U ::= owned | shared | unique | alias(?) | ⊥

Δ ::= · | G : U �, Δ

Figure 3. Typing environment and annotations used in typ-
ing rules

3.4.1 Aliasing. Aliasing between variables and fields is
tracked by entries of the form G : alias(?) in Δ. This de-
notes that the G stores the same value as the path (a vari-
able or some field access) ? . Two paths are aliased iff they
reference the same object, thus aliasing is an equivalence re-
lation. This is encoded by the judgment Δ ⊢ ?1 ≡ ?2, which
denotes that Δ indicates that the path ?1 is aliased with ?2.
Formal rules are given in Appendix A.4.
Given an environment Δ, we define its alias graph to be

a (undirected) graph whose nodes are syntactic paths (? as
defined in Figure 2), and distinct paths ?1 and ?2 are con-
nected iff Δ ⊢ ?1 ≡ ?2. Each component of this graph may
contain at most one path annotated with owned, unique, or
shared.
Intuitively, the alias graphs for each programpoint (which

identify allowable aliasing), along with validation of unique-
ness invariants (which ensures that no other aliases of unique
values exists), is the primary product of our analysis. This
output can then be used to automatically verify the effects
of mutation or, more generally, separation invariants.

3.4.2 Sidenote: concurrency. Sincewe are tracking aliases
across multiple statements, and our alias annotations may
point to mutable heap locations, it may seem challenging
to handle concurrency. However, we only claim to precisely
track aliases of unique or borrowed values, i.e. expressions
for which Δ ⊢ 4 : owned � ⊣ Δ

′ holds for some � and Δ
′.
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Intuitively, if this holds for a variable G , and G is aliased to
~.5 , then ~.5 is also unique, which requires ~ to be unique.
In other words, either the current context or some calling
context is the sole owner of ~, and thus of the heap location
~.5 . (This reasoning may be extended for ~.5 .6, etc.) There-
fore we can determine all mutations that would affect this
alias relation. In other words, assuming soundness of our ap-
proach for sequential programs, it should remain sound for
concurrent programs, as long as unique values accessible to
the spawned thread are consumed after a fork operation.

3.4.3 Reachable aliasing. Δ ⊢ ?1 ≅ ?2 denotes that a
value reachable from ?1 (for example, ?1.5 ) may be aliased
with a value reachable from ?2 (for example, ?2.5 .6). Formal
rules are given in appendix A.5. If Δ 0 ?1 ≅ ?2 then ?1 and
?2 are separately unique, as defined in [16].

3.4.4 Expression typing. Δ ⊢ 4 : U4 � ⊣ Δ
′ denotes that

4 may be used as a value with class � and ownership anno-
tation U4 , provided that all future typing uses the Δ′ typing
environment. Formal rules are given in Figure 4.

Δ ⊢ 4 : unique(?.5 ) ⊣ Δ
′ denotes that 4 refers to a unique

value (as defined in §3.1), and 4 is aliased with ?.5 in Δ
′.

This is used to validate assignments to unique fields, since
the assignee is a field whose annotation is not stored in Δ.
Thus aliasing information is tracked by annotating the as-
signment value, instead of annotating the assignee.
For a variable G annotated with alias(?), Δ ⊢ G : U4 � ⊣ Δ

′

holds if and only if Δ ⊢ ? : U4 � ⊣ Δ
′ – in other words,

aliased variables may be used exactly how the path they
alias may be used.
When borrowing a unique field value (i.e. passing the

value to a parameter annotated as owned), the object refer-
ence must also be unique. For example, if we have variables
G : shared� and ~ : shared� , and� contains a unique field
5 , we cannot borrow G.5 because we do not know whether
the same heap location is already borrowed through ~.5 .
Thus one can introduce aliases to a unique field of a shared
value, but those values can only be used after a destructive
read or some equivalent operation.
Finally, a value of a subtype � may be used as a value of

the supertype type � with the same annotation.

3.4.5 Isolation. Δ ∗ ? ⊣ Δ
′ denotes that ? is isolated from

Δ
′ – all references to ? contained in Δ are removed in Δ

′.
Δ
′ represents a state where ? is assigned a new value, thus

all aliases to ? in Δ should be removed in Δ
′. Moreover, if

? represented a unique value and a variable G was aliased
to ? , G contains a unique value after ? is overwritten. Thus
destructive reads are accomplished by first introducing an
alias to? , and then overwriting ? with a different value, such
as null.
Given an environment Δ, we define its reference graph

to be a (directed) graph whose nodes are syntactic paths.

E-Owned

Δ(G) = owned�

Δ ⊢ G : owned� ⊣ Δ

E-Shared

Δ(G) = shared�

Δ ⊢ G : shared� ⊣ Δ

E-UniqeOwned

Δ(G) = unique�

Δ ⊢ G : owned� ⊣ Δ

E-UniqeShared

Δ(G) = unique�

Δ ⊢ G : shared� ⊣
Δ[G ↦→ shared �]

E-UniqeUniqe

Δ(G) = unique �

Δ ⊢ G : unique� ⊣
Δ[G ↦→ ⊥ �]

E-UniqeAlias

Δ(G) = unique�

Δ ⊢ G : unique(?.5 ) � ⊣
Δ[G ↦→ alias(?.5 ) �]

E-Alias

Δ(G) = alias(?) �
Δ ⊢ ? : U4 � ⊣ Δ′

Δ ⊢ G : U4 � ⊣ Δ
′

E-FieldOwned

Δ ⊢ ? : owned� ⊣ Δ

�ype(�) (5 ) = unique �′

Δ ⊢ ?.5 : owned�′ ⊣ Δ

E-FieldShared

Δ ⊢ ? : �
�ype(�) (5 ) = shared�′

Δ ⊢ ?.5 : shared�′ ⊣ Δ

E-Sub

Δ ⊢ 4 : U4 � ⊣ Δ
′

� <: �

Δ ⊢ 4 : U4 � ⊣ Δ′

E-Null

Δ ⊢ null : U4 � ⊣ Δ

Figure 4. Expression usage typing rules

An edge G → ? exists iff Δ contains an annotation G :
alias(?. · · · ).
Intuitively, the origin of an edge in the alias graph iden-

tifies a variable whose annotation requires updating when
its target is mutated. Unlike the alias graph defined in §3.4.1,
this graph is not symmetric or transitive.
For example, in the popmethod, after line 30 we have the

annotation value : alias(this.root.value). Thus the
reference graph contains the edge value→ this.root.
If the value of this.root is changed, we must determine
a new annotation for value.
Formal rules are given in appendix A.7. The rules deal

with three main cases:

1. No node in either the reference graph or the alias
graph ? is connected to ? . Δ is unchanged, except to
remove ? from dom(Δ). (See the I-Remove* rules.)
This case is applied during validation of line 30 in Fig-
ure 1 to remove the initial annotation value : ⊥.

2. For some variable G (distinct from ?), G is aliased with
? . In this case, all paths rooted in ? may be replaced
by paths rooted in G . (See the I-Replace* rules.)

3. ? is disconnected in the alias graph, but ? is the target
of an edge in the reference graph. In this case, we can



isolate the subfield that induces this edge (such as?.5 )
before isolating ? . (See the I-Elim* rules.)
This case is applied during validation of line 33 in Fig-
ure 1 when isolating this.root. The annotation of
value is updated from alias(this.root.value)
to unique.

3.4.6 Framing. When a reference is passed to a method,
any field of the referenced object can bemodified. The frame

of a method call contains all such fields. Any aliases to fields
in the method’s frame must be invalidated after the method
call.

Δ ★ 4 ⊣ Δ
′ denotes that all variables that are connected

(in the reference graph of Δ) to any path in the list 4 are
marked in Δ

′ as either shared, in cases where alias tracking
is unnecessary, or ⊥, in cases where aliases must be tracked.
Formal rules are given in appendix A.8.

3.4.7 Statement typing. Statements are typed by the judg-
ment Δ ⊢ B ⊣ Δ

′. Selected rules are shown in Figure 5. See
appendix A.10 for a complete listing.
An assignment such as G = ? adds an edge G → ? to

the alias graph. Note that as a special case, G = null adds
the annotation G : unique (see definition of alias in Appen-
dix A.3).
When 5 is a unique field and 4 is a path, G.5 = 4 adds

an edge 4 → G.5 to the alias graph by using the annota-
tion unique(G.5 ) when validating 4 . Note that G.5 is iso-
lated before typing 4 , which allows patterns such as lines
32-33 in Figure 1, where this.root is updated to point to
this.root.next without a destructive read. Since the
field this.root is unique, the variable aliased to this
.root.nextmay overwrite this.root without violat-
ing uniqueness.
Method calls are validated by validating each argument

according to the corresponding parameter definition. Note
that after typing an argument as unique, all paths rooted
in the argument are inaccessible. Therefore reachable alias-
ing cannot exist between parameters annotatedwith unique.
However, aliasing is not prohibited simply by typing argu-
ments passed to parameters annotated owned, since bor-
rowed values are not consumed. Therefore we explicitly pro-
hibit reachable aliasing between owned parameters.We also
invalidate aliases to fields in the frame of the method call, as
discussed in §3.4.6.

3.4.8 Unification. When anif statement is validated, each
branch must be validated, which produces two separate typ-
ing environments, Δ1 and Δ2. These environments are uni-
fied by finding an annotation that can be used in both en-
vironments for each variable in the outer environment Δ.
Formal rules are given in appendix A.9.
If some variable G has the same annotation in both branches,

then this common annotation may be used. If G refers to a
shared value in both Δ1 and Δ2, then it may be annotated

S-AssignVar

Δ(G) = U �
Δ ⊢ 4 : � Δ 0 G ≡ 4 Δ ∗ G ⊣ Δ

′

Δ ⊢ G = 4; ⊣ G : alias(4) �,Δ′

S-Call

U0 �0, · · · , U= �= → U � = mtype(�0) (<)
Δ ⊢ 40 : U0 �0, · · · , 4= : U= �= ⊣ Δ′

Δ
′(G) = U ′ �

� <: � Δ
′
★ 40, · · · , 4= ⊣ Δ′′

Δ
′′ ∗ G ⊣ Δ′′′

∀0 ≤ 8 < 9 ≤ = :
[
U8 = owned =⇒ Δ

′
0 48 ≅ 4 9

]

Δ ⊢ G = 40.<(41, · · · , 4=); ⊣ G : U �,Δ′′′

S-AssignUniqe

Δ ⊢ G : �
Δ ∗ G.5 ⊣ Δ

′ �ype(�) (5 ) = unique�′

Δ 0 G.5 ≅ 4 Δ
′ ⊢ 4 : unique(G.5 ) �′ ⊣ Δ

′′

Δ ⊢ G.5 = 4; ⊣ Δ′′

S-Conditional

Δ ⊢ 41 : Object Δ ⊢ 42 : Object
Δ ⊢ B1 ⊣ Δ1 Δ ⊢ B2 ⊣ Δ2

Δ ⊢ if (41 == 42) B1 else B2 ⊣ unify(Δ;Δ1;Δ2)

Figure 5. Statement typing rules

with shared. If a variable is not referenced in starting Δ, the
variable may be isolated from Δ1 and Δ2. This removes all
aliasing to variables defined within a particular branch.
If G is annotated alias(?1) in Δ1 and alias(?2) in Δ2, and

there is a path ? where Δ1 ⊢ ?1 ≡ ? and Δ2 ⊢ ?2 ≡ ? , then G
may be annotatedwith alias(?) after unification. Otherwise,
if none of these cases apply, the variable is annotated with
⊥, thus making its value inaccessible.
Unification occurs in the popmethod in Figure 1 prior to

thereturn statement. In the first branch,value is unique
since it is null. In the second branch,value is first aliased
with this.root.value, but then becomes unique after
line 33. Thus value is unique in both branches, and we
can use value in the return statement, which requires a
unique value.
Note that more specific unification procedures could be

developed. For example, we could implement conditional
aliasing annotations, or validate every possible execution
path independently (and thus eliminate unification entirely).
However, we feel that this conservative unification algorithm
is more usable since it allows clear error messages when at-
tempting to access variables that are inaccessible due to uni-
fication.

3.4.9 Program typing. A valid program is defined in ap-
pendix A.11, along with rules for typing method and class
declarations.
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1 unique Object dequeue(owned Stack this) {

2 Node r = this.root;

3 Object value;

4 if (r == null || r.next == null) {

5 value = this.pop();

6 } else {

7 value = dequeueHelper(r);

8 }

9 return value;

10 }

11

12 unique Object dequeueHelper(owned Stack this,

13 owned Node n) {

14 Object value;

15 if (n.next.next == null) {

16 value = n.next.value;

17 n.next = null;

18 } else {

19 value = dequeueHelper(n.next);

20 }

21 return value;

22 }

Figure 6. Example: a dequeue method for the Stack

class from Figure 1

3.5 Extended example

The dequeue method in Figure 6 allows the stack to be
used as a FIFO queue. The recursive traversal of the linked
list is handled by the dequeueHelpermethod. Note that
the entire list is traversed, and the tail modified, using only
a single destructive read.
This is enabled by borrowing the unique valuethis.root,

and in turn each next node. The value of an owned param-
eter is guaranteed to be unique, but its value may not be
consumed or placed on the heap. Thus dequeueHelper
guarantees that no additional aliases to nwill be introduced.
However, the contents of an owned value may be modified,
which allows the tail Node to be removed.

Also note that the unique value n.next.value is read
without an explicit destructive read at line 16. Instead, it is
known to be unique since its container (n.next) is isolated
at line 17.
In a survey of related work, Milano et al. [22] found that

ownership systems often require explicit destructive reads
at each step when traversing and modifying a linked list
as in this example. However, our isolation technique, com-
bined with local aliased values and borrowing, eliminates
this requirement while allowing common code patterns and
requiring few annotations.

4 Future Work

While the design decisions were guided by making this sys-
tem usable by developers, we would need to implement the

system and evaluate it in larger examples with users. A com-
parison of the effort in different examples with the alter-
natives in the related work would also be interesting, to
confirmwhether our invariant helps developers to annotate
their code. Additionally, our current approach includes only
a core set of Java features that we would like to extend to
include while loops.
One of the motivations of this work was to introduce

enough information to reason about mutability to support
Liquid Types in a mutable context. Flux [20] took the first
steps in this area, by using Rust’s ownership type in combi-
nation with a Liquid Type System. Our proposal targets the
Java language instead, and serves as the basis to extend Liq-
uidJava [13] to better model aliasing and uniqueness com-
bined with refinements. Because Liquid Types supports a
logic-based version of symbolic execution, the information
from refinements could be used in the unification to have a
more precise alias tracking, instead of the conservative in-
validation we took instead.

5 Conclusion

We have described Latte, a simple type system for unique-
ness and aliasing for Java, which prioritizes usability and
low development overhead. Our vision is that more complex
type systems may utilize the uniqueness and aliasing infor-
mation determined by Latte. Latte enforces (and requires
consideration of) simple invariants of values on the heap,
imposes a low annotation burden, and requires no changes
to existing Java semantics.
Our simple uniqueness invariant indicates that a unique

object is stored at most once on the heap. In addition, all
usable references to a unique object from the local environ-
ment are precisely inferred. The developer only needs to
annotate field declarations and the parameters and return
types of method declarations, using one of unique, owned
or shared.
While itmay lack the expressive power of related approaches,

we hope that Latte provides a lower barrier to entry for ex-
isting Java developers, thus enhancing the appeal of auto-
mated verification tools built on Latte. Further evaluation
of its usability, along with the development of such verifica-
tion tools, is required to validate this goal.
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A Typing rules

A.1 Reference typing

Δ ⊢ ? : � denotes that the path ? is accessible and contains
either null or an reference to an instance of class � .

T-Var

U ≠ ⊥

Δ, G : U � ⊢ G : �

T-Field

Δ ⊢ ? : �
�ype(�) (5 ) = U �′

Δ ⊢ ?.5 : �′

A.2 Subtyping

� <: � denotes that� extends a parent class � . It is a reflex-
ive and transitive relation.

C-Id

� <: �

C-Transitive

� <: � � <: �

� <: �

C-Def

class� extends � { �  " }

� <: �

A.3 Auxiliary functions

fields(�) denotes the list of field declarations in� .�ype(�) (5 )
denotes the annotation and class specified in the declaration
of field 5 in class � . mtype(�) (<) denotes the signature of
method< in class � . alias(4) is a helper function which de-
notes the annotation alias(4) when 4 is a path, and unique

when 4 is null.

F-Obj

fields(Object) = ·

F-Decl

class� extends � { �  " }

� = U 5 � 5 ; fields(�) = U 5 ′ � 6

fields(�) = U 5 ′ � 6 U 5 � 5

F-Type

U 5 � 5 ∈ fields(�)

�ype(�) (5 ) = U 5 �

M-Class

class� extends � { �  " }

g <(U? this, U? � G) { B } ∈ "

mtype(�) (<) = U? � → g

M-Super

class� extends � { �  " }

mtype(�) (<) = U? � → g

mtype(�) (<) = U? � → g

alias(4) :=

{
unique if 4 = null

alias(4) otherwise

A.4 Aliasing

Δ ⊢ ? ≡ ? ′ denotes that a path ? refers to the same value as
? ′.

A-Refl

Δ ⊢ ? ≡ ?

A-Var

Δ(G) = alias(?) �

Δ ⊢ G ≡ ?

A-Cong

Δ ⊢ ?1 ≡ ?2

Δ ⊢ ?1.5 ≡ ?2.5

A-Symm

Δ ⊢ ?1 ≡ ?2

Δ ⊢ ?2 ≡ ?1

A-Trans

Δ ⊢ ?1 ≡ ?2 Δ ⊢ ?2 ≡ ?3

Δ ⊢ ?1 ≡ ?3

A.5 Reachable aliasing

Δ ⊢ ? ≅ ? ′ denotes that a value reachable from ? may be
aliased with a value reachable from ? ′, given the aliasing
specified in Δ.

RA-Refl

Δ ⊢ ? ≅ ?

RA-Symm

Δ ⊢ ?1 ≅ ?2

Δ ⊢ ?2 ≅ ?1

RA-Trans

Δ ⊢ ?1 ≅ ?2 Δ ⊢ ?2 ≅ ?3

Δ ⊢ ?1 ≅ ?3

RA-Field

Δ ⊢ ?1 ≅ ?2

Δ ⊢ ?1.5 ≅ ?2

RA-Var

Δ(G) = alias(?) �

Δ ⊢ G ≅ ?

A.6 Replacement

? [? ′′/? ′] denotes the path ? with the path ? ′ replaced by
? ′′. For example, G.5 [~.6/G] = ~.6.5 .

G [? ′′/? ′] :=

{
? ′′ if G = ? ′

G otherwise

?.5 [? ′′/? ′] :=

{
? ′′ if ?.5 = ? ′

? [? ′′/? ′] .5 otherwise

Δ[? ′′/? ′] denotes the environment Δwith all aliases that
reference the path ? ′ updated to instead reference the path
? ′′.

·[? ′′/? ′] := ·

(G : U �,Δ) [? ′′/? ′] :=





G : alias(? [? ′′/? ′]) �,Δ[? ′′/? ′]
if U = alias(?) for some ?

G : U �,Δ′ [? ′′/? ′]
otherwise

A.7 Isolation

Δ ⊢ G  ? denotes that a variable G is aliased with a path
rooted in ? , i.e. ? , ?.5 , ?.5 .6, etc. In other words, an aliased
edge exists between G and ? or a reference edge points to ? .

VA-Intro

Δ(G) = alias(? ′) Δ ⊢ ? ≡ ? ′

Δ ⊢ G  ?

VA-FieldElim

Δ ⊢ G  ?.5

Δ ⊢ G  ?



Δ ∗ ? ⊣ Δ
′ denotes that a path ? is isolated from Δ

′, as
described in Section 3.4.5.

I-RemoveField

�G ∈ dom(Δ) : Δ ⊢ G  ?.5

Δ ∗ ?.5 ⊣ Δ

I-ReplaceUniqe

Δ = G : alias(? ′ .5 ) �,Δ′

Δ ⊢ ? ≡ ? ′ Δ ⊢ ?.5 : owned�′ ⊣ Δ

Δ ∗ ?.5 ⊣ G : unique�,Δ′ [G/?.5 ]

I-ReplaceShared

Δ = G : alias(? ′ .5 ) �,Δ′

Δ ⊢ ? ≡ ? ′ Δ ⊢ ?.5 : shared�′ ⊣ Δ

Δ ∗ ?.5 ⊣ G : shared�,Δ′ [G/?.5 ]

I-ReplaceInaccessible

Δ = G : alias(? ′ .5 ) �,Δ′
Δ ⊢ ? ≡ ? ′

Δ ∗ ?.5 ⊣ G : ⊥ �,Δ′ [G/?.5 ]

I-ElimField

�G ∈ dom(Δ) : Δ(G) ⊢ G ≡ ?.5
Δ ⊢ G  ?.5 .6 Δ ∗ ?.5 .6 ⊣ Δ

′
Δ
′ ∗ ?.5 ⊣ Δ

′′

Δ ∗ ?.5 ⊣ Δ
′′

I-RemoveVar

Δ = G : U �,Δ′ �~ ∈ dom(Δ′) : Δ ⊢ ~ G

Δ ∗ G ⊣ Δ
′

I-ReplaceAlias

Δ = G : alias(?) �,Δ′

Δ ∗ G ⊣ Δ′ [?/G]

I-ReplaceAliased

Δ = G : U �,~ : U ′ �′,Δ′

Δ ⊢ ~ ≡ G U ∈ { unique, owned, shared,⊥ }

Δ ∗ G ⊣ ~ : U �,Δ′ [~/G]

I-ElimVar

Δ = G : U �,Δ′ �~ ∈ dom(Δ′) : Δ ⊢ ~ ≡ G
Δ ⊢ ~  G.5 Δ ∗ G.5 ⊣ Δ

′
Δ
′ ∗ G ⊣ Δ

′′

Δ ∗ G ⊣ Δ
′′

A.8 Framing

Δ ⊢ Δ★? ⊣ Δ
′ denotes that all edges ? in the reference graph

of Δ are inaccessible or shared in Δ
′. This is used to remove

alias references to fields that are contained in amethod call’s
frame since those aliases may no longer be correct if the
method changes that field.

Δ★ ? ⊣ Δ
′ repeats this process for all paths in the list ?.

R-Shared

U ∈ { shared, owned, unique,⊥ } Δ ⊢ Δ
′
★ ? ⊣ Δ

′′

Δ ⊢ G : U �,Δ′
★ ? ⊣ G : U �,Δ′′

R-SharedAlias

Δ ⊢ ? ′ : shared� ⊣ Δ Δ ⊢ Δ
′
★ ? ⊣ Δ

′′

Δ ⊢ G : alias(? ′) �,Δ′
★ ? ⊣ G : shared�,Δ′′

R-Separate

�5 : Δ ⊢ G  ?.5 Δ ⊢ Δ′
★ ? ⊣ Δ′′

Δ ⊢ G : U �,Δ′
★ ? ⊣ G : U �,Δ′′

R-Inaccessible

Δ ⊢ Δ′
★ ? ⊣ Δ′′

Δ ⊢ G : U �,Δ′
★ ? ⊣ G : ⊥ �,Δ′′

R-Empty

Δ ⊢ ·★ ? ⊣ ·

Δ★ ?1, · · · , ?= ⊣ Δ′ ⇐⇒ Δ = Δ0 ⊢ Δ0 ★ ?1 ⊣ Δ1

...

Δ=−1 ⊢ Δ=−1 ★ ?= ⊣ Δ= = Δ
′

A.9 Unification

U � U ′ denotes that an annotation U may be used in place
of U ′ – this means that U represents fewer permissions than
U ′.

A-Id

Δ ⊢ U � U

A-Shared

Δ ⊢ shared � unique

A-Inacc

Δ ⊢ ⊥ � U

A-Alias

Δ ⊢ ?1 ≡ ?2

Δ ⊢ alias(?1) � alias(?2)

A-SharedAlias

Δ ⊢ ?.5 : shared� ⊣ Δ

Δ ⊢ shared � alias(?.5 )

unify(Δ;Δ1;Δ2) denotes the unification of branches Δ1

and Δ2, given a parent environment Δ.

U-Empty

unify(·;Δ1;Δ2) = ·

U-Comm

unify(Δ;Δ1;Δ2) = Δ
′

unify(Δ;Δ2;Δ1) = Δ
′

U-Join

unify(Δ;Δ1;Δ2) = Δ
′

Δ1(G) = U1 � Δ2(G) = U2 � Δ
′ ⊢ U1 � U2

unify(G : U �,Δ1;Δ2) = G : U1 �,Δ
′

U-Isolate

~ ∗ Δ1 ⊣ Δ
′
1 unify(Δ;Δ′

1;Δ2) = Δ
′

unify(Δ;~ : U �,Δ1;Δ2) = Δ
′

A.10 Statement typing

A statement B is valid if Δ ⊢ B ⊣ Δ
′. Δ′ represents the state

after B is executed.
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For ease of notation, we define Δ ⊢ 41 : U1 �1, · · · , 4= :
U= �= ⊣ Δ

′ to hold iff, for some Δ0, · · · ,Δ=,

Δ = Δ0 ⊢ 41 : U1 �1 ⊣ Δ1

...

Δ=−1 ⊢ 4= : U= �= ⊣ Δ= = Δ
′

Similarly,Δ ⊢ B1, · · · , B= ⊣ Δ
′ holds iff, for someΔ0, · · · ,Δ=,

Δ = Δ0 ⊢ B1 ⊣ Δ1, · · · , and Δ=−1 ⊢ B= ⊣ Δ= = Δ
′.

S-Block

Δ ⊢ B ⊣ Δ
′

Δ ⊢ { B } ⊣ Δ
′

S-Decl

Δ ⊢ � G; ⊣ G : ⊥ �,Δ

S-AssignVar

Δ(G) = U � Δ ⊢ 4 : � Δ 0 G ≡ 4 Δ ∗ G ⊣ Δ
′

Δ ⊢ G = 4; ⊣ G : alias(4) �,Δ′

S-AssignShared

Δ ⊢ G : � Δ ∗ G.5 ⊣ Δ
′

�ype(�) (5 ) = shared�′
Δ
′ ⊢ 4 : shared�′ ⊣ Δ

′′

Δ ⊢ G.5 = 4; ⊣ Δ
′′

S-AssignUniqe

Δ ⊢ G : � Δ ∗ G.5 ⊣ Δ
′ �ype(�) (5 ) = unique�′

Δ 0 G.5 ≅ 4 Δ
′ ⊢ 4 : unique(G.5 ) �′ ⊣ Δ′′

Δ ⊢ G.5 = 4; ⊣ Δ
′′

S-New

U1 �1 51, · · · , U= �= 5= = fields(�)
Δ ⊢ 41 : U1 �1, · · · , 4= : U= �= ⊣ Δ

′

Δ
′ (G) = U � � <: � Δ

′ ∗ G ⊣ Δ
′′

∀0 ≤ 8 < 9 ≤ = :
[
U8 = owned =⇒ Δ

′
0 48 ≅ 4 9

]

Δ ⊢ G = new� (4); ⊣ G : unique �,Δ′′

S-Call

U0 �0, · · · , U= �= → U � = mtype(�0) (<)
Δ ⊢ 40 : U0 �0, · · · , 4= : U= �= ⊣ Δ

′
Δ
′(G) = U ′ �

� <: � Δ
′
★ 40, · · · , 4= ⊣ Δ

′′
Δ
′′ ∗ G ⊣ Δ

′′′

∀0 ≤ 8 < 9 ≤ = :
[
U8 = owned =⇒ Δ

′
0 48 ≅ 4 9

]

Δ ⊢ G = 40 .<(41, · · · , 4=); ⊣ G : U �,Δ′′′

S-CallVoid

U0 �0, · · · , U= �= → g = mtype(�0) (<)
Δ ⊢ 40 : U0 �0, · · · , 4= : U= �= ⊣ Δ

′

Δ
′
★ 40, · · · , 4= ⊣ Δ′′

∀0 ≤ 8 < 9 ≤ = :
[
U8 = owned =⇒ Δ

′
0 48 ≅ 4 9

]

Δ ⊢ 40 .<(41, · · · , 4=); ⊣ Δ
′′

S-Conditional

Δ ⊢ 41 : Object Δ ⊢ 42 : Object
Δ ⊢ B1 ⊣ Δ1 Δ ⊢ B2 ⊣ Δ2 unify(Δ;Δ1;Δ2) = Δ

′

Δ ⊢ if (41 == 42) B1 else B2 ⊣ Δ
′

A.11 Program typing

A program % = �! is valid if�! ok for all class declarations
�!.

T-Method

this : U?0 �, G : U? � ⊢ B ⊣ Δ′

Δ
′ ⊢ 4 : U �′ ⊣ Δ

′′

class� extends � { ... }

if mtype(�) (<) = U ′? � → g3 , then

U? � = U ′? � and U �′
= g3

U �′ <(U?0 this, U? � G) { B return 4; }
ok in �

T-VoidMethod

this : U?0 �, G : U? � ⊢ B ⊣ Δ′

class� extends � { · · · }

if mtype(�) (<) = U ′? � → g3 ,, then

U? � = U ′? � and void = g3

void<(U?0 this, U? � G) { B } ok in �

T-Class

 = � (U 5 ′ � 6, U 5 � 5 ){ super(6); Cℎ8B.5 = 5 ; }

� = U 5 � 5 ; fields(�) = U 5 ′ � 6 " ok in C

class� extends � { �  " } ok
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