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Abstract
Previously, gradual verification has been developed using

overapproximating logics such as Hoare logic. We show that

the static verification component of gradual verification is

also connected to underapproximating logics like incorrect-

ness logic. To do this, we use a novel definition of gradual

verification and a novel gradualization of exact logic [Maksi-

movic et al. 2023] which we call gradual exact logic. Further,

we show that Hoare logic, incorrectness logic, and gradual

verification can be defined in terms of gradual exact logic.

We hope that this connection can be used to develop tools

and techniques that apply to both gradual verification and

bug-finding. For example, we envision that techniques de-

fined in terms of exact logic can be directly applied to ver-

ification, bug-finding, and gradual verification, using the

principles of gradual typing [Garcia et al. 2016].

1 Overview
Incorrectness logic [O’Hearn 2020] has been recently de-

veloped as a formal basis for “true bug-finding” and has

been applied in industrial-strength tools [Le et al. 2022].

Deductions in this logic prove reachability, which enables

bug-finding tools to prove the existence of an invalid state

while selectively exploring the possible paths.

At the same time, gradual verification (GV) [Bader et al.

2018] addresses the complexity of traditional static verifi-

cation. Gradually verified programs may contain imprecise

specifications—logical formulas annotated to indicate that

they contain only a partial specification of behavior. A grad-

ual verifier checks the imprecise specifications using static

verification where it can and run-time checks (i.e. dynamic

verification) elsewhere. These run-time checks can be exer-

cised, e.g. with testing, giving the programmer confidence

that their code will not enter a state that violates their partial

specifications. Using gradual verification, programmers can

incrementally verify a program, incrementally learn verifi-

cation constructs, and safely guard unverified components.

More recent work [Lööw et al. 2024; Maksimovic et al.

2023; Zilberstein et al. 2023] has produced logics and tools

that unify over-approximating (OX) logic, often used in veri-

fication, and under-approximating (UX) logics including IL.

In this paper, we propose another unification of OX and UX

logics that we derive using the principles of gradual verifi-

cation. The resulting characterization of IL demonstrates a

previously unexplored connection between GV and IL.

1.1 Hoare logic
A triple inHoare logic (HL) [Hoare 1969] is denoted {𝑃}𝐶 {𝑄}.
(𝑃,𝑄 refer to logical specifications; 𝐶 refers to a program

statement.) Semantically, the triple is valid if, for every state

𝜎 ∈ 𝑃 (i.e., 𝑃 is true of 𝜎), when 𝜎
𝐶→ 𝜎 ′

(i.e., executing 𝐶

results in 𝜎 ′
), then 𝜎 ′ ∈ 𝑄 :

𝑃 𝑄

𝐶−→

Thus HL is an overapproximating (OX) logic—the postcon-

dition𝑄 overapproximates the states that are reachable from

𝑃 ; precisely, 𝑄 ⊇ {𝜎 ′ | ∃𝜎 ∈ 𝑃 : 𝜎
𝐶→ 𝜎 ′}. HL is a formal

foundation for program verification precisely because the

postcondition is true in all ending states.

1.2 Incorrectness logic
A triple in incorrectness logic (IL) [O’Hearn 2020] is denoted

[𝑃] 𝐶 [𝑄]1. Semantically, the triple is valid if, for every 𝜎 ′ ∈
𝑄 , there is some 𝜎 ∈ 𝑃 such that 𝜎

𝐶→ 𝜎 ′
:

𝑃 𝑄

𝐶−→

Thus IL is an underapproximating (UX) logic—the postcondi-

tion𝑄 underapproximates the states that are reachable from

𝑃 ; precisely, 𝑄 ⊆ {𝜎 ′ | ∃𝜎 ∈ 𝑃 : 𝜎
𝐶→ 𝜎 ′}. Interpreting 𝑄 as

a specification of a bug, IL is a logic for finding bugs since a

valid triple indicates that the bug is reachable.

1.3 Gradual verification
Gradual verification (GV) [Bader et al. 2018] reduces the

burden of static verification by allowing incomplete (impre-

cise) specifications. A gradual verifier may make optimistic

assumptions when verifying imprecisely-specified code. Typ-

ically, the final program is elaborated to check these assump-

tions at run-time. However, in this work we focus solely

on the static verification component of GV so that we can

compare its logic with HL and IL.

We denote imprecise triples by {? ∧ 𝑃} 𝐶 {𝑄}. Intuitively,
this triple is valid if there is some 𝑃 ′ ⇒ 𝑃 such that {𝑃 ′}𝐶 {𝑄}
1
IL triples often include a specification for error states, but we omit error

handling to simplify the comparison with other logics.
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is valid in HL. One can think of ? as representing the addi-
tional assumptions introduced by 𝑃 ′

.

For example, the following imprecise triple is valid:

{? ∧ ⊤} 𝑥 ≔ 𝑥 + 1 {𝑥 > 0}
This follows from the validity of

{𝑥 ≥ 0 ∧ ⊤} 𝑥 ≔ 𝑥 + 1 {𝑥 > 0}.
That is, the postcondition is ensured when assuming 𝑥 ≥ 0.

However, the assumptions must be plausible; formally, 𝑃 ′

(and thus 𝑃 ) must be satisfiable (i.e., 𝑃 ′ . ⊥). Otherwise,
all imprecise triples would be vacuously valid by taking

𝑃 ′ ≡ ⊥. With this in mind, GV can be stated as a reachability

problem—semantically, {? ∧ 𝑃} 𝐶 {𝑄} is valid if there exists

some states 𝜎 and 𝜎 ′
such that 𝜎 ∈ 𝑃 , 𝜎

𝐶→ 𝜎 ′
, and 𝜎 ′ ∈ 𝑄 :

𝑃 𝑄
𝐶−→

By contrapositive, the triple is invalid (i.e., static verification

will error) if it is never possible for 𝐶 to ensure 𝑄 , given 𝑃 .

By comparing this diagram with those in §1.1 and §1.2, we

can deduce that HL and IL triples are valid imprecise triples,

except for vacuous cases where 𝑃 ≡ ⊥ in HL or 𝑄 ≡ ⊥ in IL.

Our semantic definition of validity is equivalent to the

previous definition which uses Hoare triples: Let 𝑃 ′
be a

formula that represents 𝜎 as specifically as possible, then

(intuitively) {𝑃 ′} 𝐶 {𝑄} is valid since 𝜎
𝐶→ 𝜎 ′

and 𝜎 ′ ∈ 𝑄 .

But, we can also define valid imprecise triples in terms

of IL—{? ∧ 𝑃} 𝐶 {𝑄} is valid if [𝑃] 𝐶 [𝑄 ′] is valid for some

𝑄 ′ ⇒ 𝑄 . In §2.5 we will prove these definitions equivalent.

2 Formal foundations
We will now sketch our formal definitions and results. See

the appendices for the full statements and proofs.

1. We define gradual exact logic—a consistent lifting [Gar-

cia et al. 2016] of exact logic [Maksimovic et al. 2023].

2. We show that HL, IL, and GV can be characterized by

gradual exact logic.

3. We show that GV contains OX and UX deductions.

4. We show that, for imprecise specifications, GV can be

equivalently defined using OX or UX logics.

2.1 Exact logic
Exact logic (EL) [Maksimovic et al. 2023] is the intersection

of HL and IL: an EL triple (𝑃) 𝐶 (𝑄) is valid if {𝑃} 𝐶 {𝑄}
and [𝑃] 𝐶 [𝑄] are both valid. Deductions are thus exact—

they can neither under- or overapproximate behavior (see

Appendix E for rules).

2.2 Gradual exact logic

We further define gradual exact logic (ẼL) as a consistent

lifting [Garcia et al. 2016] of EL.

First, some definitions: Formula denotes all formulas in

FOL with arithmetic; we call these precise. SatFormula de-

notes all satisfiable formulas. An imprecise formula is of

the form ? ∧ 𝑃 where 𝑃 ∈ Formula. A gradual formula

𝑃 ∈ F̃ormula can be either precise or imprecise.

The concretization 𝛾 : F̃ormula → P(Formula) inter-
prets a gradual formulas as sets of precise formulas:

𝛾 (? ∧ 𝑃) = {𝑃 ′ ∈ SatFormula | 𝑃 ′ ⇒ 𝑃}, 𝛾 (𝑃) = {𝑃}

Let ⊢ (𝑃) 𝐶 (𝑄) denote a valid EL triple. Deductions in ẼL,

denoted ⊢̃ (𝑃) 𝐶 (𝑄), are defined as a consistent lifting of EL
deductions (Appendix E.2):

⊢̃ (𝑃) 𝐶 (𝑄) def⇐⇒ ⊢ (𝑃) 𝐶 (𝑄) for some 𝑃 ∈ 𝛾 (𝑃), 𝑄 ∈ 𝛾 (𝑄)

2.3 Strongest postconditions
sp(𝑃,𝐶) denotes the strongest (WRT⇒)𝑄 forwhich {𝑃}𝐶 {𝑄}
is valid (calculated as usual; see Appendix B.2). Strongest

postconditions are related to HL, IL, and EL as follows:

⊢ {𝑃} 𝐶 {𝑄} ⇐⇒ sp(𝑃,𝐶) ⇒ 𝑄 Theorem 2

⊢ [𝑃] 𝐶 [𝑄] ⇐⇒ sp(𝑃,𝐶) ⇐ 𝑄 Theorem 3

⊢ (𝑃) 𝐶 (𝑄) ⇐⇒ sp(𝑃,𝐶) ≡ 𝑄 Theorem 4

2.4 HL and IL via ẼL
We can characterize valid HL triples as ẼL triples where the

postcondition is made imprecise. Assuming that 𝑃 . ⊥ and

𝐶 terminates (in either of these cases {𝑃} 𝐶 {𝑄} is vacuous),
we have 𝑃,𝑄, sp(𝑃,𝐶) ∈ SatFormula and thus (Theorem 5)

⊢ {𝑃} 𝐶 {𝑄} ⇐⇒ sp(𝑃,𝐶) ⇒ 𝑄

⇐⇒ sp(𝑃,𝐶) ∈ 𝛾 (? ∧𝑄)
⇐⇒ ⊢̃ (𝑃) 𝐶 (? ∧𝑄).

Likewise, we can characterize valid IL triples as ẼL triples

where the precondition is made imprecise. Weakest precondi-

tions are not always defined for IL [O’Hearn 2020], however,

we can reuse weakest preconditions for HL to witness the

necessary formula (see Appendix B.3). Assuming 𝑄 . ⊥
(otherwise [𝑃] 𝐶 [𝑄] is vacuous), we have (Theorem 6)

⊢ [𝑃] 𝐶 [𝑄] ⇐⇒ 𝑄 ⇒ sp(𝑃,𝐶)
⇐⇒ 𝑄 ≡ sp(wp(𝑄,𝐶) ∧ 𝑃,𝐶)
⇐⇒ ⊢ (𝑃 ∧wp(𝑄,𝐶)) 𝐶 (𝑄)
⇐⇒ ⊢̃ (? ∧ 𝑃) 𝐶 (𝑄).

2.5 GV via HL, ẼL, and IL
We can now give a precise definition of GV in terms of HL, as

sketched in §1.3
2
. We denote valid GV triples as ⊢̃ {𝑃}𝐶 {𝑄}.

⊢̃ {𝑃} 𝐶 {𝑄} def⇐⇒ ⊢ {𝑃} 𝐶 {𝑄} for some 𝑃 ∈ 𝛾 (𝑃)
2
Here we define GV more generally for all gradual preconditions, whereas

in §1.3 we defined it for imprecise preconditions.
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Using this definition and applying the characterization of

HL from §2.4 to characterize GV in terms of EL:

⊢̃ {𝑃} 𝐶 {𝑄} ⇐⇒ ⊢̃ (𝑃) 𝐶 (? ∧𝑄)
For sake of comparison, we can define ĨL as a lifting of IL,

the same way we have lifted HL to GV.

⊢̃ [𝑃] 𝐶 [𝑄] def⇐⇒ ⊢ [𝑃] 𝐶 [𝑄] for some 𝑄 ∈ 𝛾 (𝑄)
But, in the case of imprecision this is equivalent to GV. We

can see this using the characterization of IL given in §2.4:

⊢̃ [𝑃] 𝐶 [? ∧𝑄] ⇐⇒ ⊢̃ (? ∧ 𝑃) 𝐶 (? ∧𝑄)
⇐⇒ ⊢̃ {? ∧ 𝑃} 𝐶 {𝑄}.

Note: GV and ĨL differ on precise formulas—⊢̃ [𝑃] 𝐶 [𝑄]
is not equivalent to ⊢̃ {𝑃} 𝐶 {𝑄}. Also, we do not gradualize

postconditions in HL or preconditions in IL because we can

arbitrarily weaken these specifications already.

While verification of precise formulas is a key aspect of

GV, this demonstrates that verification of imprecise formu-

las can be accomplished using IL, and moreover that GV,

when verifying imprecisely-specified code, is proving an IL

deduction. Finally, we can make precise our claim from §1.3

that both OX and UX deductions are valid in (the imprecise

fragment of) GV. Assuming 𝑃 . ⊥, we have (immediate from

definition of GV)

⊢ {𝑃} 𝐶 {𝑄} =⇒ ⊢̃ {? ∧ 𝑃} 𝐶 {𝑄}.
Also, assuming 𝑄 . ⊥, we have

⊢ [𝑃] 𝐶 [𝑄] =⇒ ⊢̃ (? ∧ 𝑃) 𝐶 (𝑄)
=⇒ ⊢̃ (? ∧ 𝑃) 𝐶 (? ∧𝑄)
=⇒ ⊢̃ {? ∧ 𝑃} 𝐶 {𝑄}.

Thus GV (and ẼL) represents the union of HL and IL, while

EL represents the intersection.

3 Applications
GV and IL verifiers in practice operate quite similarly; for

example, compare the core consume operation of Zimmer-

man et al. [2024] for a gradual verifier and of Lööw et al.

[2024] for an IL verifier. Both types of verifiers make assump-

tions, including pruning paths, when establishing a postcon-

dition. This work formalizes the connection between these

methods of verification; in particular, gradual verification of

imprecisely-specified code is equivalent to IL deductions. We

hope that this will allow verifiers that already incorporate

both OX and UX logics, for example Lööw et al. [2024], to

be easily extended to GV.

Similarly, we hope our approach can be used as a frame-

work for unifying techniques across static verification, GV,

and bug-finding. For example, bi-abduction has been de-

veloped in OX logics [Calcagno et al. 2011], applied to UX

verification [Lööw et al. 2024], and is related to GV [DiVin-

cenzo 2023]. We expect that techniques like this could be

developed in the context of an exact logic, and then their

applications to OX, UX, and GV logics could be derived using

AGT-style techniques [Garcia et al. 2016].

4 Caveats and future work
While we have proven the results described, we have done

so only for a very restrictive language, and thus our results

should be considered preliminary. In particular, we do not

consider heaps, method calls, or loops. We expect our results

extend to these constructs, but showing this will require

significant work.

Our definition of GV differs from previous definitions

[Bader et al. 2018; Wise et al. 2020; Zimmerman et al. 2024].

Our novel definition more clearly demonstrates the connec-

tion with IL, and we believe it captures the essence of GV.

However, this definition only considers static verification,

and thus does not consider run-time assertions. We expect

this could be added, and we have hopes that we may be able

to model run-time assertions using an evidence-based cal-

culus similar to that of gradual typing Garcia et al. [2016].

In addition, further work is necessary to elucidate how the

“gradual guarantees” [Garcia et al. 2016] affect the relation

of GV to IL. In particular, the static gradual guarantee seems

to prohibit arbitrarily dropping paths, which IL can do.

Finally, our work is (to our knowledge) the first to explore

a gradualization of exact logic. It remains to be seen whether

this is useful its own right. For example, if library developers

write exact specifications, a gradual exact logic could be used

to aid development of these specifications, similar to how

GV aids OX verification. But significantly more work would

be necessary for this.

5 Conclusion
We have demonstrated the similarities and differences of

GV and IL. Specifically, the relation between IL deductions

and ẼL deductions with imprecise preconditions shows that

the notion of assumptions used in GV is equivalent to the

consequence rule (and path pruning) in IL. We also have

shown that GV with imprecise specifications is equivalent

to IL. Furthermore, we have defined gradual exact logic and

used this to formally compare IL, HL, and GV. While much

work remains before it is widely applicable, we hope that this

framework can be used to develop techniques that uniformly

target all three methods of verification.
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A Grammar
We define a basic language that includes mutable variables

and conditionals. Note that we do not include while loops
or functions; these constructs are left for future work.

Expr ∋ 𝐸 F 𝑛 | ⊥ | ⊤ | 𝑥 | 𝐸 ∨ 𝐸 | 𝐸 ∧ 𝐸 |
𝐸 = 𝐸 | 𝐸 < 𝐸 | ¬𝐸

Cmd ∋ 𝐶 F skip | 𝑥 ≔ 𝐸 | if 𝐸 then 𝐶 else 𝐶 | 𝐶;𝐶
Asrt ∋ 𝑃,𝑄, 𝑅 F 𝐸 | ¬𝑃 | 𝑃 ∧ 𝑃 | 𝑃 ∨ 𝑃 | ∃𝑥 𝑃
where 𝑛 ∈ Z and 𝑥 a variable name.

We assume that programs are typed correctly; for example,

expressions 𝐸 in if 𝐸 then 𝐶1 else 𝐶2 will always evaluate

to a boolean value.

Definition 1 (Implication). 𝑃 ⇒ 𝑄 if all states that satisfy

𝑃 also satisfy 𝑄 .

Note: we do not formalize states or the semantics of asser-

tions; we assume that our logic is close enough to first-order

logic and thus use FOL deductions to reason about assertions.

Note: We use · ⇒ · to denote implication between formu-

las in first-order logic with booleans and arithmetic. · =⇒ ·
denotes “if-then” in our metatheory.

Definition 2 (Equivalence of propositions). 𝑃 ≡ 𝑄 denotes

that 𝑃 and 𝑄 are logically equivalent; that is,

𝑃 ≡ 𝑄
def⇐⇒ 𝑃 ⇒ 𝑄 and 𝑄 ⇒ 𝑃 .

Throughout this paper, we assume that identity of propo-

sitions coincides with equivalence; that is, when we write

an individual proposition, technically we are denoting the

equivalence class that contains that proposition. For example,

{⊤,⊥} = {1 = 1, 1 = 2}.
Definition 3 (Replacement). 𝑃 [𝑥/𝐸] denotes 𝑃 with all free

occurrences of 𝑥 replaced by 𝐸.

Definition 4. fv(𝑃) denotes the free variables in the asser-

tion 𝑃 .

Definition 5. fv(𝐶) denotes all variables referenced or as-

signed in 𝐶 .

Definition 6. mod(𝐶) denotes all variables assigned in 𝐶 .

Explicitly,

mod(skip) ≔ ∅
mod(𝑥 ≔ 𝐸) ≔ 𝑥

mod(𝐶1;𝐶2) ≔ mod(𝐶1) ∪mod(𝐶2)
mod(if 𝐸 then 𝐶1 else 𝐶2) ≔ mod(𝐶1) ∪mod(𝐶2)

B Predicate transformers
B.1 Weakest preconditions
Definition 7. 𝑃 is the weakest precondition for a statement

𝐶 and postcondition𝑄 , denotedwp(𝐶,𝑄), if it is the weakest
predicate (WRT ⇒) that ensures that if a state satisfies 𝑃 ,

then after executing 𝐶 , 𝑄 holds.

The following explicit calculations correspond to the pre-

vious definition (proved in Theorem 1):

wp(skip, 𝑄) = 𝑄

wp(𝑥 ≔ 𝐸,𝑄) = 𝑄 [𝑥/𝐸]
wp(𝐶1;𝐶2, 𝑄) = wp(𝐶1,wp(𝐶2, 𝑄))
wp(if 𝐸 then 𝐶1 else 𝐶2, 𝑄) =
(wp(𝐶1, 𝑄) ∧ 𝐸) ∨ (wp(𝐶2, 𝑄) ∧ ¬𝐸)

Lemma 1 (Stronger postcondition). If 𝑄 ⇒ 𝑄 ′
then

wp(𝐶,𝑄) ⇒ wp(𝐶,𝑄 ′).
Proof. By induction on 𝐶:

skip:
wp(skip, 𝑄) ≡ 𝑄 ⇒ 𝑄 ′ ≡ wp(skip, 𝑄 ′)

𝑥 ≔ 𝐸:
wp(𝑥 ≔ 𝐸,𝑄) ≡ 𝑄 [𝐸/𝑥] ⇒ 𝑄 ′ [𝐸/𝑥] ≡ wp(𝑥 ≔ 𝐸,𝑄 ′)
𝐶1;𝐶2:

(1) wp(𝐶2, 𝑄) ⇒ wp(𝐶2, 𝑄
′) by induction

(2) wp(𝐶1,wp(𝐶2, 𝑄)) ⇒ wp(𝐶1,wp(𝐶2, 𝑄
′)) by in-

duction using (1)

(3) wp(𝐶1;𝐶2, 𝑄) ⇒ wp(𝐶1;𝐶2, 𝑄
′) by (2) and defi-

nition of wp

if 𝐸 then 𝐶1 else 𝐶2:
(1) wp(𝐶1, 𝑄) ⇒ wp(𝐶1, 𝑄

′) by induction

(2) wp(𝐶2, 𝑄) ⇒ wp(𝐶2, 𝑄
′) by induction

(3) By (1) and (2)

(wp(𝐶1, 𝑄) ∧ 𝐸) ∨ (wp(𝐶2, 𝑄) ∧ ¬𝐸)
⇒ (wp(𝐶1, 𝑄

′) ∧ 𝐸) ∨ (wp(𝐶2, 𝑄
′) ∧ ¬𝐸)

(4) By (3) and definition of wp

wp(if 𝐸 then 𝐶1 else 𝐶2, 𝑄)
⇒ wp(if 𝐸 then 𝐶1 else 𝐶2, 𝑄

′) □

B.2 Strongest postconditions
Definition 8. 𝑄 is the strongest postcondition for precondi-

tion 𝑃 and statement𝐶 , denoted sp(𝑃,𝐶), if it is the strongest
predicate (WRT ⇒) that ensures that if a state satisfies 𝑃 ,

then after executing 𝐶 , 𝑄 holds.

The following explicit calculations correspond to the pre-

vious definition (proved in Theorem 2):

sp(𝑃, skip) = 𝑃

sp(𝑃, 𝑥 ≔ 𝐸) = ∃𝑣 (𝑥 = 𝐸 [𝑥/𝑣] ∧ 𝑃 [𝑥/𝑣])
where 𝑣 ∉ fv(𝑃)

sp(𝑃,𝐶1;𝐶2) = sp(sp(𝑃,𝐶1),𝐶2)
sp(𝑃, if 𝐸 then 𝐶1 else 𝐶2) =
sp(𝑃 ∧ 𝐸,𝐶1) ∨ sp(𝑃 ∧ ¬𝐸,𝐶2)

Lemma 2 (Stronger precondition). If 𝑃 ⇒ 𝑃 ′
then

sp(𝑃,𝐶) ⇒ sp(𝑃 ′,𝐶).
Proof. By induction on 𝐶:

skip: sp(𝑃, skip) ≡ 𝑃 ⇒ 𝑃 ′ ≡ sp(𝑃 ′, skip).
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𝑥 ≔ 𝐸: Note that 𝑃 [𝑥/𝑣] ⇒ 𝑃 ′ [𝑥/𝑣] by logic. Then:

sp(𝑃, 𝑥 ≔ 𝐸) ≡ ∃𝑣 (𝑥 = 𝐸 [𝑥/𝑣] ∧ 𝑃 [𝑥/𝑣]) defn sp

⇒ ∃𝑣 (𝑥 = 𝐸 [𝑥/𝑣] ∧ 𝑃 ′ [𝑥/𝑣]) logic

≡ sp(𝑃 ′, 𝑥 ≔ 𝐸) defn sp

𝐶1;𝐶2:
(1) sp(𝑃,𝐶1) ⇒ sp(𝑃 ′,𝐶1) by induction

(2) sp(sp(𝑃,𝐶1),𝐶2) ⇒ sp(sp(𝑃 ′,𝐶1),𝐶2) by induc-

tion using (1)

(3) By (2) and definition of sp,

sp(𝑃,𝐶1;𝐶2) ≡ sp(sp(𝑃,𝐶1),𝐶2)
⇒ sp(sp(𝑃 ′,𝐶1),𝐶2)
≡ sp(𝑃 ′,𝐶1;𝐶2)

if 𝐸 then 𝐶1 else 𝐶2:
(1) 𝑃 ∧ 𝐸 ⇒ 𝑃 ′ ∧ 𝐸 by logic

(2) sp(𝑃∧𝐸,𝐶1) ⇒ sp(𝑃 ′∧𝐸,𝐶1) by induction using
(1)

(3) 𝑃 ∧ ¬𝐸 ⇒ 𝑃 ′ ∧ ¬𝐸 by logic

(4) sp(𝑃 ∧ ¬𝐸,𝐶2) ⇒ sp(𝑃 ′ ∧ ¬𝐸,𝐶2) by induction

using (3)

(5)
sp(𝑃, if 𝐸 then 𝐶1 else 𝐶2)

≡ sp(𝑃 ∧ 𝐸,𝐶1) ∨ sp(𝑃 ∧ ¬𝐸,𝐶2) defn sp

⇒ sp(𝑃 ′ ∧ 𝐸,𝐶1) ∨ sp(𝑃 ′ ∧ ¬𝐸,𝐶2) (2), (4), logic

≡ sp(𝑃 ′, if 𝐸 then 𝐶1 else 𝐶2) defn sp □

Lemma 3. sp(⊥,𝐶) ≡ ⊥

Proof. By induction on 𝐶:

skip: sp(⊥, skip) ≡ ⊥ by definition.

𝑥 ≔ 𝐸: sp(⊥, 𝑥 ≔ 𝐸) ≡ ∃𝑣 (𝑥 = 𝐸 [𝑥/𝑣] ∧ ⊥) ≡ ⊥ by

logic.

if 𝐸 then 𝐶1 else 𝐶2:
sp(⊥, if 𝐸 then 𝐶1 else 𝐶2)

≡ sp(⊥ ∧ 𝐸,𝐶1) ∨ sp(⊥ ∧ ¬𝐸,𝐶2) defn sp

≡ sp(⊥,𝐶1) ∨ sp(⊥,𝐶2) logic

≡ ⊥ ∨ ⊥ induction

≡ ⊥ logic

𝐶1;𝐶2:
sp(⊥,𝐶1;𝐶2) ≡ sp(sp(⊥,𝐶1),𝐶2) defn sp

≡ sp(⊥,𝐶2) induction

≡ ⊥ induction □

Lemma 4. sp(𝑃,𝐶) ≡ ⊥ =⇒ 𝑃 ≡ ⊥
Note: for a more expressive language, we would also need

termination for this to hold.

Proof. By induction on 𝐶:

skip: ⊥ ≡ sp(𝑃, skip) ≡ 𝑃 by definition.

𝑥 ≔ 𝐸:
(1) ⊥ ≡ sp(𝑃, 𝑥 ≔ 𝐸) by assumption

(2) sp(𝑃, 𝑥 ≔ 𝐸) ≡ ∃𝑣 (𝑥 = 𝐸 [𝑥/𝑣] ∧ 𝑃 [𝑥/𝑣])
(3) ⊤ ≡ ∀𝑣 (𝑥 ≠ 𝐸 [𝑥/𝑣] ∨ ¬𝑃 [𝑥/𝑣]) by logic using

(1) and (2)

(4) ⊤ ≡ ∀𝑣¬𝑃 [𝑥/𝑣] by logic using (3)

We prove this using a semantic argument (assum-

ing standard Kripke semantics for FOL):

Let M be a model and y ∈ |M|. By (3) we have

M ⊨ ∀𝑣 (𝑥 ≠ 𝐸 [𝑥/𝑣]∨¬𝑃 [𝑥/𝑣]), and thusM[𝑣 ↦→
y] ⊨ 𝑥 ≠ 𝐸 [𝑥/𝑣] ∨ ¬𝑃 [𝑥/𝑣].
Let z = J𝐸 [𝑥/𝑣]KM[𝑣 ↦→y] . Then we have M[𝑣 ↦→
y, 𝑥 ↦→ z] ⊭ 𝑥 ≠ 𝐸 [𝑥/𝑣].
Thuswe haveM[𝑣 ↦→ y, 𝑥 ↦→ z] ⊨ ¬𝑃 [𝑥/𝑣]. Since
𝑥 ∉ fv(𝑃 [𝑥/𝑣]), we have M[𝑣 ↦→ y] ⊨ ¬𝑃 [𝑥/𝑣].
Thus we can conclude thatM ⊨ ∀𝑣¬𝑃 [𝑥/𝑣].

(5) ⊤ ≡ ¬𝑃 [𝑥/𝑣] ≡ ¬𝑃 by logic using (4) and since

𝑣 ∉ fv(𝑃)
(6) ⊥ ≡ 𝑃 by logic using (5)

𝐶1;𝐶2

(1) ⊥ ≡ sp(𝑃,𝐶1;𝐶2) by assumption

(2) sp(𝑃,𝐶1;𝐶2) ≡ sp(sp(𝑃,𝐶1),𝐶2) by definition

(3) ⊥ ≡ sp(sp(𝑃,𝐶1),𝐶2) by logic using (1) and (2)

(4) ⊥ ≡ sp(𝑃,𝐶1) by induction using (3)

(5) ⊥ ≡ 𝑃 by induction using (4)

[if 𝐸 then 𝐶1 else 𝐶2]

(1) ⊥ ≡ sp(𝑃, if 𝐸 then 𝐶1 else 𝐶2) by assumption

(2) sp(𝑃, if 𝐸 then 𝐶1 else 𝐶2) ≡ sp(𝑃 ∧ 𝐸,𝐶1) ∨
sp(𝑃 ∧ ¬𝐸,𝐶2) by definition

(3) ⊥ ≡ sp(𝑃 ∧ 𝐸,𝐶1) ∨ sp(𝑃 ∧¬𝐸,𝐶2) by (1) and (2)

(4) ⊥ ≡ sp(𝑃 ∧ 𝐸,𝐶1) by logic using (3)

(5) ⊥ ≡ sp(𝑃 ∧ ¬𝐸,𝐶2) by logic using (3)

(6) ⊥ ≡ 𝑃 ∧ 𝐸 by induction using (4)

(7) ⊥ ≡ 𝑃 ∧ ¬𝐸 by induction using (5)

(8) ⊥ ≡ (𝑃 ∧ 𝐸) ∨ (𝑃 ∧ ¬𝐸) ≡ 𝑃 ∧ (𝐸 ∨ ¬𝐸) ≡ 𝑃 by

logic using (6) and (7) □

Lemma 5. If 𝑃 ∈ SatFormula then sp(𝑃,𝐶) ∈ SatFormula.

Proof. We prove the contrapositive: assume sp(𝑃,𝐶) ∉
SatFormula, then sp(𝑃,𝐶) ≡ ⊥, and thus by Lemma 4 𝑃 ≡
⊥. Therefore 𝑃 ∉ SatFormula. □

Lemma 6. If 𝑦 ∉ fv(𝐶) then sp(∃𝑦 𝑃,𝐶) ≡ ∃𝑦 sp(𝑃,𝐶).

Proof. By induction on 𝐶:

skip: sp(∃𝑦 𝑃, skip) ≡ ∃𝑦 𝑃 ≡ ∃𝑦 sp(𝑃, skip)
𝑥 ≔ 𝐸: Assuming 𝑦 . 𝑣 ,

sp(∃𝑦 𝑃, 𝑥 ≔ 𝐸)
≡ ∃𝑣 (𝑥 = 𝐸 [𝑥/𝑣] ∧ (∃𝑦 𝑃) [𝑥/𝑣]) defn sp

≡ ∃𝑣 (𝑥 = 𝐸 [𝑥/𝑣] ∧ (∃𝑦 𝑃 [𝑥/𝑣])) 𝑦 . 𝑥 ∈ fv(𝑥 ≔ 𝐸)
≡ ∃𝑦∃𝑣 (𝑥 = 𝐸 [𝑥/𝑣] ∧ 𝑃 [𝑥/𝑣]) 𝑦 ∉ fv(𝐸 [𝑥/𝑣])
≡ ∃𝑦 sp(𝑃, 𝑥 ≔ 𝐸) defn sp
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𝐶1;𝐶2:
sp(∃𝑦 𝑃,𝐶1;𝐶2) ≡ sp(sp(∃𝑦 𝑃,𝐶1),𝐶2) defn sp

≡ sp(∃𝑦 sp(𝑃,𝐶1),𝐶2) induction

≡ ∃𝑦 sp(sp(𝑃,𝐶1),𝐶2) induction

≡ ∃𝑦 sp(𝑃,𝐶1;𝐶2) defn sp

if 𝐸 then 𝐶1 else 𝐶2:
sp(∃𝑦 𝑃, if 𝐸 then 𝐶1 else 𝐶2)

≡ sp((∃𝑦 𝑃) ∧ 𝐸,𝐶1) ∨ sp((∃𝑦 𝑃) ∧ ¬𝐸,𝐶2) defn sp

≡ sp(∃𝑦 (𝑃 ∧ 𝐸),𝐶1) ∨ sp(∃𝑦 (𝑃 ∧ ¬𝐸),𝐶2) 𝑦 ∉ fv(𝐸)
≡ (∃𝑦 sp(𝑃 ∧ 𝐸,𝐶1)) ∨ (∃𝑦 sp(𝑃 ∧ ¬𝐸,𝐶2)) induction

≡ ∃𝑦 (sp(𝑃 ∧ 𝐸,𝐶1) ∨ sp(𝑃 ∧ ¬𝐸,𝐶2)) logic

≡ ∃𝑦 sp(𝑃, if 𝐸 then 𝐶1 else 𝐶2) defn sp □

Lemma 7. sp(𝑃1 ∨ 𝑃2,𝐶) ≡ sp(𝑃1,𝐶) ∨ sp(𝑃2,𝐶)

Proof. By induction on 𝐶:

skip: sp(𝑃1 ∨ 𝑃2, skip) ≡ 𝑃1 ∨ 𝑃2 ≡
sp(𝑃1, skip) ∨ sp(𝑃2, skip).

𝑥 ≔ 𝐸:
sp(𝑃1 ∨ 𝑃2, 𝑥 ≔ 𝐸)

≡ ∃𝑣 (𝑥 = 𝐸 [𝑥/𝑣] ∧ (𝑃1 ∨ 𝑃2) [𝑥/𝑣]) defn sp

≡ ∃𝑣 (𝑥 = 𝐸 [𝑥/𝑣] ∧ (𝑃1 [𝑥/𝑣] ∨ 𝑃2 [𝑥/𝑣])) subst.

≡ ∃𝑣 ((𝑥 = 𝐸 [𝑥/𝑣] ∧ 𝑃1 [𝑥/𝑣]) ∨
(𝑥 = 𝐸 [𝑥/𝑣] ∧ 𝑃2 [𝑥/𝑣])) logic

≡ (∃𝑣 (𝑥 = 𝐸 [𝑥/𝑣] ∧ 𝑃1 [𝑥/𝑣])) ∨
(∃𝑣 (𝑥 = 𝐸 [𝑥/𝑣] ∧ 𝑃2 [𝑥/𝑣])) logic

≡ sp(𝑃1, 𝑥 ≔ 𝐸) ∨ sp(𝑃2, 𝑥 ≔ 𝐸) defn sp

𝐶1;𝐶2:
sp(𝑃1 ∨ 𝑃2,𝐶1;𝐶2)

≡ sp(sp(𝑃1 ∨ 𝑃2,𝐶1),𝐶2) defn sp

≡ sp(sp(𝑃1,𝐶1) ∨ sp(𝑃2,𝐶1),𝐶2) induction

≡ sp(sp(𝑃1,𝐶1),𝐶2) ∨ sp(sp(𝑃2,𝐶1),𝐶2) induction

≡ sp(𝑃1,𝐶1;𝐶2) ∨ sp(𝑃2,𝐶1;𝐶2) defn sp

if 𝐸 then 𝐶1 else 𝐶2:
sp(𝑃1 ∨ 𝑃2, if 𝐸 then 𝐶1 else 𝐶2)

≡ sp(𝐸 ∧ (𝑃1 ∨ 𝑃2),𝐶1) ∨
sp(¬𝐸 ∧ (𝑃1 ∨ 𝑃2),𝐶2) defn sp

≡ sp((𝐸 ∧ 𝑃1) ∨ (𝐸 ∧ 𝑃2),𝐶1) ∨
sp((¬𝐸 ∧ 𝑃1) ∨ (¬𝐸 ∧ 𝑃2),𝐶2) logic

≡ sp(𝐸 ∧ 𝑃1,𝐶1) ∨ sp(𝐸 ∧ 𝑃2,𝐶1) ∨
sp(¬𝐸 ∧ 𝑃1,𝐶2) ∨ sp(¬𝐸 ∧ 𝑃2,𝐶2) Lemma 7

≡ (sp(𝐸 ∧ 𝑃1,𝐶1) ∨ sp(¬𝐸 ∧ 𝑃1,𝐶2)) ∨
(sp(𝐸 ∧ 𝑃2,𝐶1) ∨ sp(¬𝐸 ∧ 𝑃2,𝐶2)) logic

≡ sp(𝑃1, if 𝐸 then 𝐶1 else 𝐶2) ∨
sp(𝑃2, if 𝐸 then 𝐶1 else 𝐶2) defn sp

□

Lemma 8 (Frame rule). If mod(𝐶) ∩ fv(𝑃) = ∅ then

sp(𝑃 ∧ 𝑅,𝐶) ≡ 𝑃 ∧ sp(𝑅,𝐶).
Proof. By induction on 𝐶:

skip: sp(𝑃 ∧ 𝑅, skip) ≡ 𝑃 ∧ 𝑅 ≡ 𝑃 ∧ sp(𝑅, skip)
𝑥 ≔ 𝐸: Let 𝑣 ∉ fv(𝑃). Note that 𝑥 ∈ fv(𝑥 ≔ 𝐸), thus

from our assumptions 𝑥 ∉ fv(𝑃) Then,
sp(𝑃 ∧ 𝑅, 𝑥 ≔ 𝐸)

≡ ∃𝑣 (𝑥 = 𝐸 [𝑥/𝑣] ∧ 𝑃 [𝑥/𝑣] ∧ 𝑅 [𝑥/𝑣]) defn sp

≡ ∃𝑣 (𝑥 = 𝐸 [𝑥/𝑣] ∧ 𝑃 ∧ 𝑅 [𝑥/𝑣]) 𝑥 ∉ fv(𝑃)
≡ 𝑃 ∧ ∃𝑣 (𝑥 = 𝐸 [𝑥/𝑣] ∧ 𝑅 [𝑥/𝑣]) 𝑣 ∉ fv(𝑃)
≡ 𝑃 ∧ sp(𝑅, 𝑥 ≔ 𝐸) defn sp

𝐶1;𝐶2: Note that 𝑥 ∉ mod(𝐶1;𝐶2) thus 𝑥 ∉ mod(𝐶1)
and 𝑥 mod(𝐶2). Then,

sp(𝑃 ∧ 𝑅,𝐶1;𝐶2) ≡ sp(sp(𝑃 ∧ 𝑅,𝐶1),𝐶2) defn sp

≡ sp(𝑃 ∧ sp(𝑅,𝐶1),𝐶2) induction

≡ 𝑃 ∧ sp(sp(𝑅,𝐶1),𝐶2) induction

≡ 𝑃 ∧ sp(𝑅,𝐶1;𝐶2) defn sp

if 𝐸 then 𝐶1 else 𝐶2: Note that by assumption

𝑥 ∉ mod(if 𝐸 then 𝐶1 else 𝐶2) thus 𝑥 ∉ mod(𝐶1)
and 𝑥 ∉ mod(𝐶2). Then,

sp(𝑃 ∧ 𝑅, if 𝐸 then 𝐶1 else 𝐶2)
≡ sp(𝑃 ∧ 𝑅 ∧ 𝐸,𝐶1) ∨ sp(𝑃 ∧ 𝑅 ∧ ¬𝐸,𝐶2) defn sp

≡ (𝑃 ∧ sp(𝑅 ∧ 𝐸,𝐶1)) ∨ (𝑃 ∧ sp(𝑅 ∧ ¬𝐸,𝐶2)) ind.

≡ 𝑃 ∧ (sp(𝑅 ∧ 𝐸,𝐶1) ∨ sp(𝑅 ∧ ¬𝐸,𝐶2)) logic

≡ 𝑃 ∧ sp(𝑅, if 𝐸 then 𝐶1 else 𝐶2) defn sp □

Lemma 9.
sp(𝑃 ∧ 𝐸, if 𝐸 then 𝐶1 else 𝐶2) ≡ sp(𝑃 ∧ 𝐸,𝐶1)

sp(𝑃 ∧ ¬𝐸, if 𝐸 then 𝐶1 else 𝐶2) ≡ sp(𝑃 ∧ ¬𝐸,𝐶2)
Proof.

sp(𝑃 ∧ 𝐸, if 𝐸 then 𝐶1 else 𝐶2)
≡ sp(𝑃 ∧ 𝐸 ∧ 𝐸,𝐶1) ∨ sp(𝑃 ∧ 𝐸 ∧ ¬𝐸,𝐶2) defn sp

≡ sp(𝑃 ∧ 𝐸,𝐶1) ∨ sp(⊥,𝐶2) logic

≡ sp(𝑃 ∧ 𝐸,𝐶1) ∨ ⊥ Lemma 3

≡ sp(𝑃 ∧ 𝐸,𝐶1) logic

sp(𝑃 ∧ ¬𝐸, if 𝐸 then 𝐶1 else 𝐶2)
≡ sp(𝑃 ∧ 𝐸 ∧ ¬𝐸,𝐶1) ∨ sp(𝑃 ∧ ¬𝐸 ∧ ¬𝐸,𝐶2) defn sp

≡ sp(⊥,𝐶1) ∨ sp(𝑃 ∧ ¬𝐸,𝐶2) logic

≡ ⊥ ∨ sp(𝑃 ∧ ¬𝐸,𝐶2) Lemma 3

≡ sp(𝑃 ∧ ¬𝐸,𝐶2) logic □

B.3 Fixpoint
We can define a function 𝑄 ↦→ sp(wp(𝐶,𝑄),𝐶). We demon-

strate that this function reaches a fixpoint.

Lemma 10. sp(wp(𝐶,𝑄) ∧ 𝑃,𝐶) ≡ 𝑄 ∧ sp(𝑃,𝐶)
Proof. By induction on 𝐶:
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skip: sp(wp(skip, 𝑄) ∧ 𝑃, skip) ≡ 𝑄 ∧ 𝑃 ≡
𝑄 ∧ sp(𝑃, skip)

𝑥 ≔ 𝐸: Let 𝑣 ∉ fv(𝑄). Then,
sp(wp(𝑥 ≔ 𝐸,𝑄) ∧ 𝑃, 𝑥 ≔ 𝐸)

≡ ∃𝑣 (𝑥 = 𝐸 [𝑥/𝑣] ∧
(wp(𝑥 ≔ 𝐸,𝑄) ∧ 𝑃) [𝑥/𝑣]) defn sp

≡ ∃𝑣 (𝑥 = 𝐸 [𝑥/𝑣] ∧ (𝑄 [𝑥/𝐸] ∧ 𝑃) [𝑥/𝑣]) defn wp

≡ ∃𝑣 (𝑥 = 𝐸 [𝑥/𝑣] ∧𝑄 [𝑥/𝐸 [𝑥/𝑣]] ∧ 𝑃 [𝑥/𝑣]) subst

≡ ∃𝑣 (𝑥 = 𝐸 [𝑥/𝑣] ∧𝑄 [𝑥/𝑥] ∧ 𝑃 [𝑥/𝑣]) subst =

≡ ∃𝑣 (𝑥 = 𝐸 [𝑥/𝑣] ∧𝑄 ∧ 𝑃 [𝑥/𝑣]) redundant

≡ 𝑄 ∧ (∃𝑣 𝑥 = 𝐸 [𝑥/𝑣] ∧ 𝑃 [𝑥/𝑣]) 𝑣 ∉ fv(𝑄)
≡ 𝑄 ∧ sp(𝑃, 𝑥 ≔ 𝐸) defn sp

if 𝐸 then 𝐶1 else 𝐶2:
(1) 𝑄 ∧ sp(𝑃 ∧𝐸,𝐶1) ≡ sp(wp(𝐶1, 𝑄) ∧𝑃 ∧𝐸,𝐶1) by

induction using 𝐶1

(2) 𝑄 ∧ sp(𝑃 ∧¬𝐸,𝐶2) ≡ sp(wp(𝐶2, 𝑄) ∧𝑃 ∧¬𝐸,𝐶2)
by induction using 𝐶2

(3)
𝑄 ∧ sp(𝑃, if 𝐸 then 𝐶1 else 𝐶2)

≡ 𝑄 ∧ (sp(𝑃 ∧ 𝐸,𝐶1) ∨ sp(𝑃 ∧ ¬𝐸,𝐶2)) defn sp

≡ (𝑄 ∧ sp(𝑃 ∧ 𝐸,𝐶1)) ∨
(𝑄 ∧ sp(𝑃 ∧ ¬𝐸,𝐶2)) logic

≡ sp(wp(𝐶1, 𝑄) ∧ 𝑃 ∧ 𝐸,𝐶1) ∨
sp(wp(𝐶2, 𝑄) ∧ 𝑃 ∧ ¬𝐸,𝐶2) (1), (2)

≡ sp(wp(𝐶1, 𝑄) ∧ 𝑃 ∧ 𝐸,

if 𝐸 then 𝐶1 else 𝐶2) ∨
sp(wp(𝐶2, 𝑄) ∧ 𝑃 ∧ ¬𝐸,

if 𝐸 then 𝐶1 else 𝐶2) Lemma 9

≡ sp(((wp(𝐶1, 𝑄) ∧ 𝐸) ∨
(wp(𝐶2, 𝑄) ∧ ¬𝐸)) ∧ 𝑃,

if 𝐸 then 𝐶1 else 𝐶2) Lemma 7

≡ sp(wp(if 𝐸 then 𝐶1 else 𝐶2, 𝑄) ∧ 𝑃,

if 𝐸 then 𝐶1 else 𝐶2) defn wp

𝐶1;𝐶2:
(1) wp(𝐶2, 𝑄) ∧ sp(𝑃,𝐶1) ≡ sp(wp(𝐶1,

wp(𝐶2, 𝑄)) ∧ 𝑃,𝐶1) by induction using 𝐶1

(2) 𝑄 ∧ sp(sp(𝑃,𝐶1),𝐶2) ≡ sp(wp(𝐶2, 𝑄) ∧
sp(𝑃,𝐶1),𝐶2) by induction using 𝐶2. Then,

𝑄 ∧ sp(𝑃,𝐶1;𝐶2)
≡ 𝑄 ∧ sp(sp(𝑃,𝐶1),𝐶2) defn sp

≡ sp(wp(𝐶2, 𝑄) ∧ sp(𝑃,𝐶1),𝐶2) (2)

≡ sp(sp(wp(𝐶1,wp(𝐶2, 𝑄)) ∧ 𝑃,𝐶1),𝐶2) (1)

≡ sp(sp(wp(𝐶1;𝐶2, 𝑄) ∧ 𝑃,𝐶1),𝐶2) defn wp

≡ sp(wp(𝐶1;𝐶2, 𝑄) ∧ 𝑃,𝐶1;𝐶2) defn sp □

Lemma 11 (Fixpoint property). If 𝑄 ⇒ sp(⊤,𝐶) then
𝑄 ≡ sp(wp(𝐶,𝑄),𝐶).

Proof. Immediate from Lemma 10, noting that 𝑄 ≡ 𝑄 ∧
sp(⊤,𝐶) in this case. □

Lemma 12. If 𝑄 ⇒ sp(𝑃,𝐶) then 𝑄 ≡ sp(𝑃 ∧wp(𝐶,𝑄),𝐶).

Proof.

𝑄 ≡ 𝑄 ∧ sp(𝑃,𝐶) 𝑄 ⇒ sp(𝑃,𝐶)
≡ sp(𝑃 ∧wp(𝐶,𝑄),𝐶) Lemma 10 □

C Hoare logic
Hoare triples are denoted by ⊢ {𝑃} 𝐶 {𝑄}. Deductions in
Hoare logic are characterized by the following rules:

OX-Skip

⊢ {𝑃} skip {𝑃}

OX-Assign

⊢ {𝑃 [𝑥/𝐸]} 𝑥 ≔ 𝐸 {𝑃}
OX-Seq

⊢ {𝑃} 𝐶1 {𝑅}
⊢ {𝑅} 𝐶2 {𝑄}

⊢ {𝑃} 𝐶1;𝐶2 {𝑄}

OX-If

⊢ {𝐸 ∧ 𝑃} 𝐶1 {𝑄}
⊢ {¬𝐸 ∧ 𝑃} 𝐶2 {𝑄}

⊢ {𝑃} if 𝐸 then 𝐶1 else 𝐶2 {𝑄}
OX-Cons

𝑃 ⇒ 𝑃 ′ ⊢ {𝑃 ′} 𝐶 {𝑄 ′} 𝑄 ′ ⇒ 𝑄

⊢ {𝑃} 𝐶 {𝑄}

C.1 Weakest preconditions
Lemma 13. If ⊢ {𝑃} 𝐶 {𝑄} then 𝑃 ⇒ wp(𝐶,𝑄).

Proof. By induction on the derivation of ⊢ {𝑃} 𝐶 {𝑄}:
OX-Skip:

(1) 𝑃 ≡ 𝑄 by inversion

(2) 𝑃 ≡ 𝑄 ≡ wp(skip, 𝑄) by definition

OX-Assign:
(1) 𝑃 ≡ 𝑄 [𝐸/𝑥] by inversion

(2) 𝑃 ≡ 𝑄 [𝐸/𝑥] ≡ wp(𝑥 ≔ 𝐸,𝑄) by definition

OX-Seq:
(1) ⊢ {𝑃} 𝐶1 {𝑅} for some 𝑅 by inversion

(2) 𝑃 ⇒ sp(𝐶1, 𝑅) by induction using (1)

(3) ⊢ {𝑅} 𝐶2 {𝑄} by inversion

(4) 𝑅 ⇒ wp(𝐶2, 𝑄) by induction using (3)

(5) wp(𝐶1, 𝑅) ⇒ wp(𝐶1,wp(𝐶2, 𝑄)) by Lemma 1 us-

ing (4)

(6) By (4), (5), and definition of wp,

𝑃 ⇒ wp(𝐶1, 𝑅)
⇒ wp(𝐶1,wp(𝐶2, 𝑄))
≡ wp(𝐶1;𝐶2, 𝑄)

OX-If:
(1) ⊢ {𝐸 ∧ 𝑃} 𝐶1 {𝑄} by inversion

(2) 𝐸 ∧ 𝑃 ⇒ wp(𝐶1, 𝑄) by induction using (1)

(3) ⊢ {¬𝐸 ∧ 𝑃} 𝐶2 {𝑄} by inversion

(4) ¬𝐸 ∧ 𝑃 ⇒ wp(𝐶2, 𝑄) by induction using (3)
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(5)
𝑃 ≡ (𝑃 ∧ 𝐸) ∨ (𝑃 ∧ ¬𝐸) logic

⇒ (wp(𝐶1, 𝑄) ∧ 𝐸) ∨ (wp(𝐶2, 𝑄) ∧ ¬𝐸) (2) and (4)

⇒ wp(if 𝐸 then 𝐶1 else 𝐶2, 𝑄) defn wp

OX-Cons:
(1) 𝑃 ⇒ 𝑃 ′

for some 𝑃 ′
by inversion

(2) 𝑄 ′ ⇒ 𝑄 for some 𝑄 ′
by inversion

(3) ⊢ {𝑃 ′} 𝐶 {𝑄 ′} by inversion

(4) 𝑃 ′ ⇒ wp(𝐶,𝑄 ′) by induction using (3)

(5) wp(𝐶,𝑄 ′) ⇒ wp(𝐶,𝑄) by Lemma 1 using (4)

(6) 𝑃 ⇒ 𝑃 ′ ⇒ wp(𝐶,𝑄 ′) ⇒ wp(𝐶,𝑄) by (1), (4),

and (5) □

Lemma 14. ⊢ {wp(𝐶,𝑄)} 𝐶 {𝑄}

Proof. By induction on 𝐶:

skip: wp(skip, 𝑄) ≡ 𝑄 by definition; ⊢ (𝑄) skip (𝑄)
by OX-Skip.

𝑥 ≔ 𝐸:
(1) wp(𝑥 ≔ 𝐸,𝑄) ≡ 𝑄 [𝑥/𝐸] by definition

(2) ⊢ {𝑄 [𝑥/𝐸]} 𝑥 ≔ 𝐸 {𝑄} by OX-Assign using (1)

𝐶1;𝐶2:
(1) ⊢ {wp(𝐶1,wp(𝐶2, 𝑄))}𝐶1 {wp(𝐶2, 𝑄)} by induc-

tion

(2) ⊢ {wp(𝐶2, 𝑄)} 𝐶2 {𝑄} by induction

(3) ⊢ {wp(𝐶1,wp(𝐶2, 𝑄))}𝐶1;𝐶2 {𝑄} by OX-Seq us-

ing (1) and (2)

(4) wp(𝐶1;𝐶2, 𝑄) ≡ wp(𝐶1,wp(𝐶2, 𝑄)) by definition
(5) ⊢ {wp(𝐶1;𝐶2, 𝑄)} 𝐶1;𝐶2 {𝑄} by (3) and (4)

if 𝐸 then 𝐶1 else 𝐶2:
(1) Let 𝑃 ≡ (wp(𝐶1, 𝑄) ∧ 𝐸) ∨ (wp(𝐶2, 𝑄) ∧ ¬𝐸)
(2) ⊢ {wp(𝐶1, 𝑄)} 𝐶1 {𝑄} by induction

(3) 𝑃 ∧ 𝐸 ⇒ wp(𝐶1, 𝑄) by logic

(4) ⊢ {𝑃 ∧ 𝐸} 𝐶1 {𝑄} by OX-Cons using (2) and (3)

(5) ⊢ {wp(𝐶2, 𝑄)} 𝐶2 {𝑄} by induction

(6) 𝑃 ∧ ¬𝐸 ⇒ wp(𝐶2, 𝑄) by logic

(7) ⊢ {𝑃 ∧¬𝐸} 𝐶2 {𝑄} by OX-Cons using (5) and (6)

(8) ⊢ {𝑃} if 𝐸 then 𝐶1 else 𝐶2 {𝑄} by OX-If using

(4) and (7)

(9) 𝑃 ≡ wp(if 𝐸 then 𝐶1 else 𝐶2, 𝑄) by (1) and

definition of wp

(10) ⊢ {wp(if 𝐸 then 𝐶1 else 𝐶2)}
if 𝐸 then 𝐶1 else 𝐶2 {𝑄} by (8) and (9) □

Lemma 15. If 𝑃 ⇒ wp(𝐶,𝑄) then ⊢ {𝑃} 𝐶 {𝑄}.

Proof. By Lemma 14, ⊢ {wp(𝐶,𝑄)}𝐶 {𝑄}, thus by OX-Cons
⊢ {𝑃} 𝐶 {𝑄}. □

Theorem 1. 𝑃 ⇒ wp(𝐶,𝑄) ⇐⇒ ⊢ {𝑃} 𝐶 {𝑄}.

Proof. =⇒: Lemma 15; ⇐=: Lemma 13. □

C.2 Strongest postconditions
Lemma 16. If ⊢ {𝑃} 𝐶 {𝑄} then sp(𝑃,𝐶) ⇒ 𝑄 .

Proof. By induction on ⊢ {𝑃} 𝐶 {𝑄}:
OX-Skip: Then 𝑃 ≡ 𝑄 and 𝐶 ≡ skip, thus

sp(𝑃, skip) ≡ 𝑃 ≡ 𝑄 .

OX-Assign: Then 𝑃 ≡ 𝑄 [𝑥/𝐸] and 𝐶 ≡ 𝑥 ≔ 𝐸. Assum-

ing 𝑣 ∉ fv(𝑄):
sp(𝑄 [𝑥/𝐸], 𝑥 ≔ 𝐸)

≡ ∃𝑣 (𝑥 = 𝐸 [𝑥/𝑣] ∧𝑄 [𝑥/𝐸] [𝑥/𝑣]) defn

≡ ∃𝑣 (𝑥 = 𝐸 [𝑥/𝑣] ∧𝑄 [𝑥/𝐸 [𝑥/𝑣])) substitution

≡ ∃𝑣 (𝑥 = 𝐸 [𝑥/𝑣] ∧𝑄 [𝑥/𝑥]) subst. equality

≡ ∃𝑣 (𝑥 = 𝐸 [𝑥/𝑣] ∧𝑄) redundant

⇒ 𝑄 𝑣 ∉ fv(𝑄)
OX-Seq:

(1) 𝐶 ≡ 𝐶1;𝐶2 for some 𝐶1,𝐶2 by inversion

(2) ⊢ {𝑃} 𝐶1 {𝑅} for some 𝑅 by inversion

(3) ⊢ {𝑅} 𝐶2 {𝑄} by inversion

(4) sp(𝑃,𝐶1) ⇒ 𝑅 by induction using (2)

(5) sp(sp(𝑃,𝐶1),𝐶2) ⇒ sp(𝑅,𝐶2) by Lemma 2 using

(4)

(6) sp(𝑅,𝐶2) ⇒ 𝑄 by induction using (3)

(7) sp(sp(𝑃,𝐶1),𝐶2) ⇒ 𝑄 by (5) and (6)

(8) sp(𝑃,𝐶) ≡ sp(𝑃,𝐶1;𝐶2) ⇒ 𝑄 by (1), (7), and

definition of sp

OX-If:
(1) 𝐶 ≡ if 𝐸 then 𝐶1 else 𝐶2 for some 𝐸,𝐶1,𝐶2 by

inversion

(2) ⊢ {𝐸 ∧ 𝑃} 𝐶1 {𝑄} by inversion

(3) ⊢ {¬𝐸 ∧ 𝑃} 𝐶2 {𝑄} by inversion

(4) sp(𝐸 ∧ 𝑃,𝐶1) ⇒ 𝑄 by induction using (2)

(5) sp(¬𝐸 ∧ 𝑃,𝐶2) ⇒ 𝑄 by induction using (3)

(6) sp(𝐸∧𝑃,𝐶1)∨sp(¬𝐸∧𝑃,𝐶2) ⇒ 𝑄 by logic using

(4) and (5)

(7) sp(𝑃, if 𝐸 then 𝐶1 else 𝐶2) ⇒ 𝑄 by (6) and

definition of sp

OX-Cons:
(1) 𝑃 ⇒ 𝑃 ′

for some 𝑃 ′
by inversion

(2) 𝑄 ′ ⇒ 𝑄 for some 𝑄 ′
by inversion

(3) ⊢ {𝑃 ′} 𝐶 {𝑄 ′} by inversion

(4) sp(𝑃,𝐶) ⇒ sp(𝑃 ′,𝐶) by Lemma 2 and (1)

(5) sp(𝑃 ′,𝐶) ⇒ 𝑄 ′
by induction using (3)

(6) sp(𝑃,𝐶) ⇒ 𝑄 by (4), (5), and (2) □

Lemma 17. ⊢ {𝑃} 𝐶 {sp(𝑃,𝐶)}

Proof. By induction on 𝐶:

skip:
(1) ⊢ {𝑃} skip {𝑃} by OX-Skip

(2) 𝑃 ≡ sp(𝑃, skip) by OX-Skip

(3) ⊢ {𝑃} skip {sp(𝑃, skip)} by OX-Cons using (1)

and (2)

𝑥 ≔ 𝐸:
(1) Let 𝑄 ≡ ∃𝑣 (𝑥 = 𝐸 [𝑥/𝑣] ∧ 𝑃 [𝑥/𝑣]) where 𝑣 ∉

fv(𝑃).
(2) ⊢ {𝑄 [𝐸/𝑥]} 𝑥 ≔ 𝐸 {𝑄} by OX-Assign
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(3) 𝑃 ⇒ ∃𝑣 (𝐸 = 𝐸 [𝑥/𝑣] ∧ 𝑃 [𝑥/𝑣]) ≡ 𝑄 [𝑥/𝐸] by
logic (witnessed by letting 𝑣 = 𝑥 ).

(4) ⊢ {𝑃} 𝑥 ≔ 𝐸 {𝑄} by OX-Cons using (2) and (3)

(5) ⊢ {𝑃} 𝑥 ≔ 𝐸 {sp(𝑃, 𝑥 ≔ 𝐸)} by (1), (4), and

definition of sp

𝐶1;𝐶2:
(1) ⊢ {𝑃} 𝐶1 {sp(𝑃,𝐶1)} by induction

(2) ⊢ {sp(𝑃,𝐶1)}𝐶2 {sp(sp(𝑃,𝐶1),𝐶2)} by induction
(3) ⊢ {𝑃}𝐶1;𝐶2 {sp(sp(𝑃,𝐶1),𝐶2)} byOX-Seq using

(1) and (2)

(4) sp(𝑃,𝐶1;𝐶2) ≡ sp(sp(𝑃,𝐶1),𝐶2) by definition

(5) ⊢ {𝑃} 𝐶1;𝐶2 {sp(𝑃,𝐶1;𝐶2)} by (3) and (4)

if 𝐸 then 𝐶1 else 𝐶2:
(1) ⊢ {𝑃 ∧ 𝐸} 𝐶1 {sp(𝑃 ∧ 𝐸,𝐶1)} by induction

(2) ⊢ {𝑃 ∧ ¬𝐸} 𝐶2 {sp(𝑃 ∧ ¬𝐸,𝐶2)} by induction

(3) ⊢ {𝑃 ∧ 𝐸} 𝐶1 {sp(𝑃 ∧ 𝐸,𝐶1) ∨ sp(𝑃 ∧¬𝐸,𝐶2)} by
OX-Cons using (1)

(4) ⊢ {𝑃 ∧ ¬𝐸} 𝐶2 {sp(𝑃 ∧ 𝐸,𝐶1) ∨ sp(𝑃 ∧ ¬𝐸,𝐶2)}
by OX-Cons using (2)

(5) ⊢ {𝑃} if 𝐸 then 𝐶1 else 𝐶2 {sp(𝑃 ∧ 𝐸,𝐶1) ∨
sp(𝑃 ∧ ¬𝐸,𝐶2)} by OX-If using (3) and (4)

(6) ⊢ {𝑃} if 𝐸 then 𝐶1 else 𝐶2

{sp(𝑃, if 𝐸 then 𝐶1 else 𝐶2)} by (5) and defini-

tion of sp □

Lemma 18. If sp(𝑃,𝐶) ⇒ 𝑄 then ⊢ {𝑃} 𝐶 {𝑄}.

Proof. Immediate from Lemma 17, applying OX-Cons. □

Theorem 2. sp(𝑃,𝐶) ⇒ 𝑄 ⇐⇒ ⊢ {𝑃} 𝐶 {𝑄}

Proof. =⇒: Lemma 18; ⇐=: Lemma 16 □

D Incorrectness logic
Incorrectness logic triples are denoted ⊢ [𝑃] 𝐶 [𝑄]. Deduc-
tions in incorrectness logic are defined as follows:

UX-Skip

⊢ [𝑃] skip [𝑃]

UX-Seq

⊢ [𝑃] 𝐶1 [𝑄] ⊢ [𝑄] 𝐶2 [𝑅]
⊢ [𝑃] 𝐶1;𝐶2 [𝑅]

UX-Assign

⊢ [𝑃] 𝑥 ≔ 𝐸 [∃𝑣 (𝑥 = 𝐸 [𝑥/𝑣] ∧ 𝑃 [𝑥/𝑣])]
UX-IfThen

⊢ [𝐸 ∧ 𝑃] 𝐶1 [𝑄]
⊢ [𝐸 ∧ 𝑃] if 𝐸 then 𝐶1 else 𝐶2 [𝑄]
UX-IfElse

⊢ [¬𝐸 ∧ 𝑃] 𝐶2 [𝑄]
⊢ [¬𝐸 ∧ 𝑃] if 𝐸 then 𝐶1 else 𝐶2 [𝑄]

UX-Cons

𝑃 ′ ⇒ 𝑃

⊢ [𝑃 ′] 𝐶 [𝑄 ′]
𝑄 ⇒ 𝑄 ′

⊢ [𝑃] 𝐶 [𝑄]

UX-Disj

⊢ [𝑃1] 𝐶 [𝑄1]
⊢ [𝑃2] 𝐶 [𝑄2]

⊢ [𝑃1 ∨ 𝑃2] 𝐶 [𝑄1 ∨𝑄2]

D.1 Strongest postconditions
Lemma 19. ⊢ [𝑃] 𝐶 [sp(𝑃,𝐶)]
Proof. By induction on 𝐶:

skip: By UX-Skip ⊢ [𝑃] skip [𝑃] and 𝑃 ≡ sp(𝑃, skip)
by definition.

𝑥 ≔ 𝐸:
(1) ⊢ [𝑃] 𝑥 ≔ 𝐸 [∃𝑣 (𝑥 = 𝐸 [𝑥/𝑣] ∧ 𝑃 [𝑥/𝑣])] by UX-

Assign

(2) sp(𝑃, 𝑥 ≔ 𝐸) ≡ ∃𝑣 (𝑥 = 𝐸 [𝑥/𝑣] ∧ 𝑃 [𝑥/𝑣]) by
definition of sp

(3) ⊢ [𝑃] 𝑥 ≔ 𝐸 [𝑠𝑝 (𝑃, 𝑥 ≔ 𝐸)] by (1) and (2)

𝐶1;𝐶2:
(1) ⊢ [𝑃] 𝐶1 [sp(𝑃,𝐶1)] by induction

(2) ⊢ [sp(𝑃,𝐶1)] 𝐶2 [sp(sp(𝑃,𝐶1),𝐶2)] by induction
(3) ⊢ [𝑃] 𝐶1;𝐶2 [sp(sp(𝑃,𝐶1),𝐶2)] by UX-Seq using

(1), (2)

(4) sp(𝑃,𝐶1;𝐶2) ≡ sp(sp(𝑃,𝐶1),𝐶2) by definition

(5) ⊢ [𝑃] 𝐶1;𝐶2 [sp(𝑃,𝐶1;𝐶2)] by (3), (4)

if 𝐸 then 𝐶1 else 𝐶2:
(1) ⊢ [𝐸 ∧ 𝑃] 𝐶1 [sp(𝐸 ∧ 𝑃,𝐶1)] by induction

(2) ⊢ [¬𝐸 ∧ 𝑃] 𝐶2 [sp(¬𝐸 ∧ 𝑃,𝐶2)] by induction

(3) ⊢ [𝐸 ∧ 𝑃] if 𝐸 then 𝐶1 else 𝐶2 [sp(𝐸 ∧ 𝑃,𝐶1)]
by UX-IfThen using (1)

(4) ⊢ [¬𝐸∧𝑃] if 𝐸 then𝐶1 else𝐶2 [sp(¬𝐸∧𝑃,𝐶2)]
by UX-IfElse using (2)

(5) ⊢ [𝑃] if 𝐸 then 𝐶1 else 𝐶2 [sp(𝐸 ∧ 𝑃,𝐶1) ∨
sp(¬𝐸 ∧ 𝑃,𝐶2)] by UX-Disj using (3) and (4)

(6) sp(𝑃, if 𝐸 then 𝐶1 else 𝐶2) ≡ sp(𝐸 ∧ 𝑃,𝐶1) ∨
sp(¬𝐸 ∧ 𝑃,𝐶2) by definition

(7) ⊢ [𝑃] if 𝐸 then 𝐶1 else 𝐶2

[sp(𝑃, if 𝐸 then 𝐶1 else 𝐶2)] by (5) and (6) □

Lemma 20. If 𝑄 ⇒ sp(𝑃,𝐶) then ⊢ [𝑃] 𝐶 [𝑄].
Proof. Immediate from Lemma 19 and UX-Cons. □

Lemma 21. If ⊢ [𝑃] 𝐶 [𝑄] then 𝑄 ⇒ sp(𝑃,𝐶).
Proof. By induction on the derivation ⊢ [𝑃] 𝐶 [𝑄]:

UX-Skip:
(1) 𝑄 ≡ 𝑃 by inversion

(2) sp(𝑃, skip) ≡ 𝑃 by definition

(3) 𝑄 ≡ sp(𝑃, skip) by (1) and (2)

UX-Assign:
(1) 𝑄 ≡ ∃𝑣 (𝑥 = 𝐸 [𝑥/𝑣] ∧ 𝑃 [𝑥/𝑣]) by inversion

(2) sp(𝑃, 𝑥 ≔ 𝐸) ≡ ∃𝑣 (𝑥 = 𝐸 [𝑥/𝑣] ∧ 𝑃 [𝑥/𝑣]) by
definition

(3) 𝑄 ≡ sp(𝑃, 𝑥 ≔ 𝐸) by (1) and (2)

UX-Seq:
(1) ⊢ [𝑃] 𝐶1 [𝑅] for some 𝑅 by inversion

(2) ⊢ [𝑅] 𝐶2 [𝑄] by inversion

(3) 𝑄 ⇒ sp(𝑅,𝐶2) by induction using (2)

(4) 𝑅 ⇒ sp(𝑃,𝐶1) by induction using (1)

(5) sp(𝑅,𝐶2) ⇒ sp(sp(𝑃,𝐶1),𝐶2) by Lemma 2 using

(4)
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(6)
𝑄 ⇒ sp(𝑅,𝐶2) (3)

⇒ sp(sp(𝑃,𝐶1),𝐶2) (5)

≡ sp(𝑃,𝐶1;𝐶2) defn sp

UX-IfThen:
(1) 𝐶 ≡ if 𝐸 then 𝐶1 else 𝐶2 for some 𝐸,𝐶1,𝐶2 by

inversion

(2) 𝑃 ≡ 𝐸 ∧ 𝑃 ′
for some 𝑃 ′

by inversion

(3) ⊢ [𝐸 ∧ 𝑃 ′] 𝐶1 [𝑄] by inversion

(4) 𝑄 ⇒ sp(𝐸 ∧ 𝑃 ′,𝐶1) by induction using (3)

(5) sp(𝐸∧𝑃 ′,𝐶1) ≡ sp(𝐸∧𝑃 ′, if 𝐸 then𝐶1 else𝐶2)
by Lemma 9

(6)
𝑄 ⇒ sp(𝐸 ∧ 𝑃 ′,𝐶1) (4)

≡ sp(𝐸 ∧ 𝑃 ′, if 𝐸 then 𝐶1 else 𝐶2) (5)

≡ sp(𝑃, if 𝐸 then 𝐶1 else 𝐶2) (2)

UX-IfElse:
(1) 𝐶 ≡ if 𝐸 then 𝐶1 else 𝐶2 for some 𝐸,𝐶1,𝐶2 by

inversion

(2) 𝑃 ≡ ¬𝐸 ∧ 𝑃 ′
for some 𝑃 ′

by inversion

(3) ⊢ [¬𝐸 ∧ 𝑃 ′] 𝐶2 [𝑄] by inversion

(4) 𝑄 ⇒ sp(¬𝐸 ∧ 𝑃 ′,𝐶2) by induction using (3)

(5) sp(¬𝐸 ∧ 𝑃 ′,𝐶2) ≡ sp(¬𝐸 ∧ 𝑃 ′,
if 𝐸 then 𝐶1 else 𝐶2) by Lemma 9

(6)
𝑄 ⇒ sp(¬𝐸 ∧ 𝑃 ′,𝐶2) (4)

≡ sp(¬𝐸 ∧ 𝑃 ′, if 𝐸 then 𝐶1 else 𝐶2) (5)

≡ sp(𝑃, if 𝐸 then 𝐶1 else 𝐶2) (2)

UX-Cons:
(1) ⊢ [𝑃 ′] 𝐶 [𝑄 ′] for some 𝑃 ′, 𝑄 ′

by inversion

(2) 𝑃 ′ ⇒ 𝑃 by inversion

(3) 𝑄 ⇒ 𝑄 ′
by inversion

(4) 𝑄 ′ ⇒ sp(𝑃 ′,𝐶) by induction using (1)

(5) sp(𝑃 ′,𝐶) ⇒ sp(𝑃,𝐶) by Lemma 2 using (2)

(6) 𝑄 ⇒ 𝑄 ′ ⇒ sp(𝑃 ′,𝐶) ⇒ sp(𝑃,𝐶) by (3), (4), and

(5)

UX-Disj:
(1) ⊢ [𝑃1] 𝐶 [𝑄1] for some 𝑃1, 𝑄1 by inversion

(2) ⊢ [𝑃2] 𝐶 [𝑄2] for some 𝑃2, 𝑄2 by inversion

(3) 𝑃 ≡ 𝑃1 ∨ 𝑃2 by inversion

(4) 𝑄 ≡ 𝑄1 ∨𝑄2 by inversion

(5) 𝑄1 ⇒ sp(𝑃1,𝐶) by induction using (1)

(6) 𝑄2 ⇒ sp(𝑃2,𝐶) by induction using (2)

(7) 𝑄1 ∨ 𝑄2 ⇒ sp(𝑃1,𝐶) ∨ sp(𝑃2,𝐶) by logic using

(5) and (6)

(8)
𝑄 ≡ 𝑄1 ∨𝑄2 (4)

⇒ sp(𝑃1,𝐶) ∨ sp(𝑃2,𝐶) (7)

≡ sp(𝑃1 ∨ 𝑃2,𝐶) Lemma 7

≡ sp(𝑃,𝐶) (3) □

Theorem 3. ⊢ [𝑃] 𝐶 [𝑄] ⇐⇒ 𝑄 ⇒ sp(𝑃,𝐶)

Proof. =⇒: Lemma 21; ⇐=: Lemma 20. □

D.2 Satisfiability
Lemma 22. If ⊢ [⊥] 𝐶 [𝑄] then 𝑄 ≡ ⊥.

Proof.

(1) 𝑄 ⇒ sp(⊥,𝐶) by Theorem 2

(2) sp(⊥,𝐶) ≡ ⊥ by Lemma 3

(3) 𝑄 ⇒ ⊥ logic using (1) and (2)

(4) 𝑄 ≡ ⊥ by logic using (3) □

Lemma 23. If ⊢ [𝑃] 𝐶 [𝑄] and 𝑄 ∈ SatFormula then 𝑃 ∈
SatFormula.

Proof. Assume ⊢ [𝑃] 𝐶 [𝑄], then we prove the contraposi-

tive; that is, 𝑃 ∉ SatFormula =⇒ 𝑄 ∉ SatFormula.

Assuming 𝑃 ∉ SatFormula, since 𝑃 ∈ Formula we get

𝑃 ≡ ⊥, and thus ⊢ [⊥] 𝐶 [𝑄] by assumption. Then by

Lemma 22, 𝑄 ≡ ⊥ thus 𝑄 ∉ SatFormula. □

Lemma 24. If ⊢ [𝑃] 𝐶 [𝑄] and 𝑄 ∈ SatFormula then 𝑃 ∧
wp(𝑃,𝐶) ∈ SatFormula.

Proof.

(1) ⊢ [𝑃] 𝐶 [𝑄] by assumption

(2) 𝑄 ∈ SatFormula by assumption

(3) 𝑄 ⇒ sp(𝑃,𝐶) by Lemma 21 using (1)

(4) sp(𝑃 ∧wp(𝑃,𝐶),𝐶) ≡ 𝑄 by Lemma 12 using (3)

(5) ⊢ [𝑃 ∧wp(𝑃,𝐶)] 𝐶 [𝑄] by Lemma 20 using (4)

(6) 𝑃 ∧wp(𝐶,𝑄) ∈ SatFormula by Lemma 23 using (2)

and (5) □

E Exact logic
Exact logic triples are denoted by ⊢ (𝑃) 𝐶 (𝑄). Deductions
in exact logic are characterized by the following rules:

EX-Skip

⊢ (⊤) skip (⊤)

EX-Assign

𝑥 ∉ fv(𝐸′)
⊢ (𝑥 = 𝐸′) 𝑥 ≔ 𝐸 (𝑥 = 𝐸 [𝑥/𝐸′])

EX-IfThen

⊢ (𝑃 ∧ 𝐸) 𝐶1 (𝑄)
⊢ (𝑃 ∧ 𝐸) if 𝐸 then 𝐶1 else 𝐶2 (𝑄)

EX-Seq

⊢ (𝑃) 𝐶1 (𝑅)
⊢ (𝑅) 𝐶2 (𝑄)

⊢ (𝑃) 𝐶1;𝐶2 (𝑄)

EX-IfElse

⊢ (𝑃 ∧ ¬𝐸) 𝐶2 (𝑄)
⊢ (𝑃 ∧ ¬𝐸) if 𝐸 then 𝐶1 else 𝐶2 (𝑄)

EX-Frame

mod(𝐶) ∩ fv(𝑅) = ∅
⊢ (𝑃) 𝐶 (𝑄)

⊢ (𝑃 ∧ 𝑅) 𝐶 (𝑄 ∧ 𝑅)
EX-Exists

⊢ (𝑃) 𝐶 (𝑄)
𝑥 ∉ fv(𝐶)

⊢ (∃𝑥 𝑃) 𝐶 (∃𝑥 𝑄)

EX-Disj

⊢ (𝑃1) 𝐶 (𝑄1)
⊢ (𝑃2) 𝐶 (𝑄2)

⊢ (𝑃1 ∨ 𝑃2) 𝐶 (𝑄1 ∨𝑄2)
Note: We drop the equivalence rule, since it is immediately

valid by our characterization of formulas by equivalence

classes.
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E.1 Strongest postconditions
Lemma 25. ⊢ (𝑃) 𝐶 (sp(𝑃,𝐶))

Proof. By induction on 𝐶:

skip: By EX-Skip ⊢ (𝑃) skip (𝑃) and 𝑃 ≡ sp(𝑃, skip)
by definition.

𝐶 ≡ 𝑥 ≔ 𝐸:
(1) 𝑃 ≡ ∃𝑦 (𝑥 = 𝑦∧𝑃 ′) for some 𝑃 ′

since ∃𝑦 (𝑥 = 𝑦) is
a tautology. WLOG assume 𝑥 ∉ fv(𝑃 ′) (instances
of 𝑥 can be replaced with 𝑦).

(2) ⊢ (𝑥 = 𝑦) 𝑥 ≔ 𝐸 (𝑥 = 𝐸 [𝑥/𝑦]) by EX-Assign.

(3) ⊢ (𝑥 = 𝑦 ∧ 𝑃 ′) 𝑥 ≔ 𝐸 (𝑥 = 𝐸 [𝑥/𝑦] ∧ 𝑃 ′) by
EX-Frame and (2).

(4) ⊢ (∃𝑦 (𝑥 = 𝑦∧𝑃 ′)) 𝑥 ≔ 𝐸 (∃𝑦 (𝑥 = 𝐸 [𝑥/𝑦] ∧𝑃 ′))
by EX-Exists and (3).

(5)
sp(𝑃, 𝑥 ≔ 𝐸) ≡ ∃𝑣 (𝑥 = 𝐸 [𝑥/𝑣] ∧ 𝑃 [𝑥/𝑣]) defn

≡ ∃𝑣 (𝑥 = 𝐸 [𝑥/𝑣] ∧ (∃𝑦 (𝑣 = 𝑦 ∧ 𝑃 ′))) (1)

≡ ∃𝑦 (𝑥 = 𝐸 [𝑥/𝑦] ∧ 𝑃 ′) logic

(6) ⊢ (𝑃) 𝑥 ≔ 𝐸 (sp(𝑃, 𝑥 ≔ 𝐸)) by (1), (4), and (5).

𝐶1;𝐶2:
(1) ⊢ (𝑃) 𝐶 (sp(𝑃,𝐶1)) by induction

(2) ⊢ (sp(𝑃,𝐶1)) 𝐶2 (sp(sp(𝑃,𝐶1),𝐶2)) by induction

(3) ⊢ (𝑃) 𝐶1;𝐶2 (sp(sp(𝑃,𝐶1),𝐶2)) by EX-Seq using

(1), (2)

(4) sp(sp(𝑃,𝐶1),𝐶2) ≡ sp(𝑃,𝐶1;𝐶2) by definition

(5) ⊢ (𝑃) 𝐶1;𝐶2 (sp(𝑃,𝐶1;𝐶2)) by (3) and (4)

if 𝐸 then 𝐶1 else 𝐶2:
(1) ⊢ (𝑃 ∧ 𝐸) 𝐶1 (sp(𝑃 ∧ 𝐸,𝐶1)) by induction

(2) ⊢ (𝑃 ∧ ¬𝐸) 𝐶2 (sp(𝑃 ∧ ¬𝐸,𝐶2)) by induction

(3) ⊢ (𝑃 ∧ 𝐸) if 𝐸 then 𝐶1 else 𝐶2 (sp(𝑃 ∧ 𝐸,𝐶1))
by EX-IfThen using (1)

(4) ⊢ (𝑃∧¬𝐸) if 𝐸 then𝐶1 else𝐶2 (sp(𝑃∧¬𝐸,𝐶2))
by EX-IfElse using (2)

(5) ⊢ ((𝑃 ∧ 𝐸) ∨ (𝑃 ∧ ¬𝐸)) if 𝐸 then 𝐶1 else 𝐶2

(sp(𝑃 ∧ 𝐸,𝐶1) ∨ sp(𝑃 ∧¬𝐸,𝐶2)) by EX-Disj using

(3), (4)

(6) (𝑃 ∧ 𝐸) ∨ (𝑃 ∧ ¬𝐸) ≡ 𝑃 by logic

(7) sp(𝑃 ∧ 𝐸,𝐶1) ∨ sp(𝑃 ∧ ¬𝐸,𝐶2) ≡
sp(𝑃, if 𝐸 then 𝐶1 else 𝐶2) by definition

(8) ⊢ (𝑃) if 𝐸 then 𝐶1 else 𝐶2

(sp(𝑃, if 𝐸 then 𝐶1 else 𝐶2)) by (5), (6), and (7)

□

Lemma 26. If ⊢ (𝑃) 𝐶 (𝑄) then 𝑄 ≡ sp(𝑃,𝐶).

Proof. By induction on the derivation ⊢ (𝑃) 𝐶 (𝑄):
EX-Skip: By inversion𝐶 ≡ skip and𝑄 ≡ 𝑃 , and by def-

inition sp(𝑃, skip) ≡ 𝑃 . Thus sp(𝑃,𝐶) ≡ sp(𝑃, skip)
≡ 𝑃 ≡ 𝑄 .

EX-Assign:
(1) 𝐶 ≡ 𝑥 ≔ 𝐸 for some 𝑥, 𝐸 by inversion

(2) 𝑃 ≡ 𝑥 = 𝐸′
for some 𝐸′

by inversion

(3) 𝑄 ≡ 𝑥 = 𝐸 [𝑥/𝐸′] by inversion

(4) 𝑥 ∉ fv(𝐸′) by inversion

(5)
sp(𝑃,𝐶)

≡ sp(𝑥 = 𝐸′, 𝑥 ≔ 𝐸) (1), (2)

≡ ∃𝑣 (𝑥 = 𝐸 [𝑥/𝑣] ∧ (𝑥 = 𝐸′) [𝑥/𝑣]) defn sp

≡ ∃𝑣 (𝑥 = 𝐸 [𝑥/𝑣] ∧ 𝑣 = 𝐸′) (4)

≡ ∃𝑣 (𝑥 = 𝐸 [𝑥/𝐸′] ∧ 𝑣 = 𝐸′) logic

≡ 𝑥 = 𝐸 [𝑥/𝐸′] ∧ ∃𝑣 𝑣 = 𝐸′
(4)

≡ 𝑥 = 𝐸 [𝑥/𝐸′] logic

≡ 𝑄 (3)

EX-IfThen:
(1) 𝐶 ≡ if 𝐸 then 𝐶1 else 𝐶2 by inversion

(2) 𝑃 ≡ 𝑃 ′ ∧ 𝐸 for some 𝑃 ′
by inversion

(3) ⊢ (𝑃 ′ ∧ 𝐸) 𝐶1 (𝑄) by inversion

(4) 𝑄 ≡ sp(𝑃 ′ ∧ 𝐸,𝐶1) by induction using (3)

(5)
sp(𝑃,𝐶)

≡ sp(𝑃 ′ ∧ 𝐸, if 𝐸 then 𝐶1 else 𝐶2) (1), (2)

≡ sp(𝑃 ′ ∧ 𝐸,𝐶1) Lemma 9

≡ 𝑄 (4)

EX-IfElse:
(1) 𝐶 ≡ if 𝐸 then 𝐶1 else 𝐶2 by inversion

(2) 𝑃 ≡ 𝑃 ′ ∧ ¬𝐸 for some 𝑃 ′
by inversion

(3) ⊢ (𝑃 ′ ∧ ¬𝐸) 𝐶2 (𝑄) by inversion

(4) 𝑄 ≡ sp(𝑃 ′ ∧ ¬𝐸,𝐶2) by induction using (3)

(5)
sp(𝑃,𝐶)

≡ sp(𝑃 ′ ∧ ¬𝐸, if 𝐸 then 𝐶1 else 𝐶2) (1), (2)

≡ sp(𝑃 ′ ∧ ¬𝐸,𝐶2) Lemma 9

≡ 𝑄 (4)

EX-Seq:
(1) 𝐶 ≡ 𝐶1;𝐶2 for some 𝐶1,𝐶2 by inversion

(2) ⊢ (𝑃) 𝐶1 (𝑅) for some 𝑅 by inversion

(3) ⊢ (𝑅) 𝐶2 (𝑄) by inversion

(4) 𝑅 ≡ sp(𝑃,𝐶1) by induction using (2)

(5) 𝑄 ≡ sp(𝑅,𝐶2) by induction using (3)

(6)
sp(𝑃,𝐶) ≡ sp(𝑃,𝐶1;𝐶2) (1)

≡ sp(sp(𝑃,𝐶1),𝐶2) defn sp

≡ sp(𝑅,𝐶2) (4)

≡ 𝑄 (5)

EX-Exists:
(1) 𝑃 ≡ ∃𝑥 𝑃 ′

for some 𝑃 ′
by inversion

(2) 𝑄 ≡ ∃𝑥 𝑄 ′
for some 𝑄 ′

by inversion

(3) ⊢ (𝑃 ′) 𝐶 (𝑄 ′) by inversion

(4) 𝑥 ∉ fv(𝐶) by inversion

(5) 𝑄 ′ ≡ sp(𝑃 ′,𝐶) by induction using (3)
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(6)
sp(𝑃,𝐶) ≡ sp(∃𝑥 𝑃 ′,𝐶) (2)

≡ ∃𝑥 sp(𝑃 ′,𝐶) Lemma 6

≡ ∃𝑥 𝑄 ′
(5)

≡ 𝑄 (2)

EX-Disj:
(1) 𝑃 ≡ 𝑃1 ∨ 𝑃2 for some 𝑃1, 𝑃2 by inversion

(2) 𝑄 ≡ 𝑄1 ∨𝑄2 for some 𝑄1, 𝑄2 by inversion

(3) ⊢ (𝑃1) 𝐶 (𝑄1) by inversion

(4) ⊢ (𝑃2) 𝐶 (𝑄2) by inversion

(5) 𝑄1 ≡ sp(𝑃1,𝐶) by induction using (3)

(6) 𝑄2 ≡ sp(𝑃2,𝐶) by induction using (4)

(7)
sp(𝑃,𝐶) ≡ sp(𝑃1 ∨ 𝑃2,𝐶) (1)

≡ sp(𝑃1,𝐶) ∨ sp(𝑃2,𝐶) Lemma 7

≡ 𝑄1 ∨𝑄2 (5), (6)

≡ 𝑄 (2)

EX-Frame:
(1) 𝑃 ≡ 𝑃 ′ ∧ 𝑅 for some 𝑃 ′, 𝑅 by inversion

(2) 𝑄 ≡ 𝑄 ′ ∧ 𝑅 for some 𝑄 ′
by inversion

(3) mod(𝐶) ∩ fv(𝑅) = ∅ by inversion

(4) ⊢ (𝑃 ′) 𝐶 (𝑄 ′) by inversion

(5) sp(𝑃 ′,𝐶) ≡ 𝑄 by induction using (4)

(6) sp(𝑃 ′ ∧ 𝑅,𝐶) ≡ 𝑅 ∧ sp(𝑃 ′,𝐶) by Lemma 8 using

(3)

(7)
sp(𝑃,𝐶) ≡ sp(𝑃 ′ ∧ 𝑅,𝐶) (1)

≡ 𝑅 ∧ sp(𝑃 ′,𝐶) (6)

≡ 𝑅 ∧𝑄 ′
(5)

≡ 𝑄 (2) □

Theorem 4. ⊢ (𝑃) 𝐶 (𝑄) ⇐⇒ 𝑄 ≡ sp(𝑃,𝐶)

Proof. =⇒: Lemma 26; ⇐=: Lemma 25 □

E.2 Gradual exact logic
Valid triples in gradual exact logic are denoted ⊢̃ (𝑃) 𝐶 (𝑄).

Definition 9. The concretization 𝛾 : F̃ormula →
P(Formula) maps a gradual formula to the set of all formu-

las it can represent:

𝛾 (𝑃) ≔ {𝑃}
𝛾 (? ∧ 𝑃) ≔ {𝑃 ′ ∈ SatFormula | 𝑃 ′ ⇒ 𝑃}

Definition 10. Deductions in gradual exact logic directly

are lifted deductions in exact logic:

⊢̃ (𝑃) 𝐶 (𝑄) def⇐⇒ ⊢ (𝑃) 𝐶 (𝑄)
for some 𝑃 ∈ 𝛾 (𝑃) and 𝑄 ∈ 𝛾 (𝑄)

Theorem 5. For 𝑃 ∈ SatFormula,

⊢̃ (𝑃) 𝐶 (? ∧𝑄) ⇐⇒ ⊢ {𝑃} 𝐶 {𝑄}.

That is, except for the vacuous case where 𝑃 ≡ ⊥, gradualizing
the postcondition exactly characterizes deductions in Hoare

logic.

Proof. =⇒:

(1) ⊢̃ (𝑃) 𝐶 (? ∧𝑄) by assumptino

(2) ⊢ (𝑃) 𝐶 (𝑄 ′) for some 𝑄 ′ ∈ 𝛾 (? ∧𝑄) by (1)

(3) sp(𝑃,𝐶) ≡ 𝑄 ′
by Lemma 26 using (2)

(4) 𝑄 ′ ⇒ 𝑄 by definition of 𝛾 and (2)

(5) sp(𝑃,𝐶) ⇒ 𝑄 by (3) and (4)

(6) ⊢ {𝑃} 𝐶 {𝑄} by Lemma 18 using (5)

⇐=:

(1) ⊢ {𝑃} 𝐶 {𝑄} by assumption

(2) 𝑃 ∈ SatFormula by assumption

(3) sp(𝑃,𝐶) ⇒ 𝑄 by Lemma 16 using (1)

(4) sp(𝑃,𝐶) ∈ SatFormula by Lemma 5 using (2)

(5) sp(𝑃,𝐶) ∈ 𝛾 (? ∧𝑄) by definition of 𝛾 using (3) and

(4)

(6) ⊢ (𝑃) 𝐶 (sp(𝑃,𝐶)) by Lemma 25

(7) ⊢̃ (𝑃) 𝐶 (? ∧𝑄) by definition using (5) and (6) □

Theorem 6. If 𝑄 ∈ SatFormula,

⊢̃ (? ∧ 𝑃) 𝐶 (𝑄) ⇐⇒ ⊢ [𝑃] 𝐶 [𝑄]
That is, except in the vacuous case where 𝑄 ≡ ⊥, gradualizing
the precondition exactly characterizes deductions in incorrect-

ness logic.

Proof. =⇒:

(1) ⊢̃ (? ∧ 𝑃) 𝐶 (𝑄) by assumption

(2) ⊢ (𝑃 ′) 𝐶 (𝑄) for some 𝑃 ′ ∈ 𝛾 (? ∧ 𝑃) by definition

using (1)

(3) 𝑃 ′ ⇒ 𝑃 by definition of 𝛾 using (2)

(4) 𝑄 ≡ sp(𝑃 ′,𝐶) by Lemma 26 using (2)

(5) sp(𝑃 ′,𝐶) ⇒ sp(𝑃,𝐶) by Lemma 2 using (3)

(6) 𝑄 ⇒ sp(𝑃,𝐶) by (4) and (5)

(7) ⊢ [𝑃] 𝐶 [𝑄] by Theorem 2 using (6)

⇐=:

(1) ⊢ [𝑃] 𝐶 [𝑄] by assumption

(2) 𝑄 ∈ SatFormula by assumption

(3) 𝑃 ∧wp(𝐶,𝑄) ∈ SatFormula by Lemma 24 using (1)

and (2)

(4) 𝑃 ∧wp(𝐶,𝑄) ⇒ 𝑃 by logic

(5) 𝑃 ∧wp(𝐶,𝑄) ∈ 𝛾 (? ∧ 𝑃) by definition of 𝛾 using (3)

and (4)

(6) 𝑄 ⇒ sp(𝑃,𝐶) by Theorem 2 using (1)

(7) sp(𝑃 ∧wp(𝐶,𝑄),𝐶) ≡ 𝑄 by Lemma 12 using (6)

(8) ⊢ (𝑃 ∧wp(𝐶,𝑄)) 𝐶 (𝑄) by Theorem 4 using (7)

(9) ⊢̃ (? ∧ 𝑃) 𝐶 (𝑄) by (5) and (8) □
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